696 [Vol. 41,

151. Commuting Dilations of Self-adjoint Operators

By Tsuyoshi Ando and Makoto Takaguchi Research Institute of Applied Electricity, Hokkaido University (Comm. by Kinjirô Kunugi, M.J.A., Oct. 12, 1965)

All operators considered are bounded self-adjoint. Given an operator A on the Hilbert space \mathfrak{D} , an operator T on a superspace \mathfrak{D} is called a *dilation* of A in case Af=PTf for $f\in\mathfrak{D}$, where P is the projection onto \mathfrak{D} . A family \mathfrak{A} of operators on \mathfrak{D} is said to be of $\langle \alpha, \beta \rangle$ type in case there is a commutative family \mathfrak{B} of operators on a superspace such that spectra of every member of \mathfrak{B} are contained in the closed interval $[\alpha, \beta]$ and every member of \mathfrak{A} finds a dilation in \mathfrak{B} . In the above definition the superspace is not fixed throughout, but depends on \mathfrak{A} . In this note an intrinsic description of being of $\langle \alpha, \beta \rangle$ type is given and some of related problems are discussed.

Since under a homothety $A \rightarrow \rho A + \xi I$, I being the identity operator, the dilation type $\langle \alpha, \beta \rangle$ changes to $\langle \rho \alpha + \xi, \rho \beta + \xi \rangle$ or $\langle \rho \beta + \xi, \rho \alpha + \xi \rangle$ according as ρ is positive or not, most of discussions can be reduced to the cases of positive (i.e., non-negative definite) operators.

A finite family $\{A_1, \dots, A_n\}$ of positive operators is said to be γ -decomposable in case there is a finite family of positive operators, admitting possible multiplicity, such that the total sum is γI and every A_j is a sum of a suitable subfamily. The definition can be also stated in this way: there is a positive operator-valued, finitely additive measure, with total measure γI , on a Boolean algebra, whose range contains all A's. A family of positive operators is said to be γ -decomposable in case every finite subfamily is γ -decomposable.

Given a 1-decomposable family $\mathfrak{A} = \{A_{\lambda} : \lambda \in A\}$, consider the free Boolean algebra with A as the set of generators. By the 1-decomposability, for any finite subset $\{\lambda_1, \dots, \lambda_n\}$ of indices there is a normalized, positive operator valued, finitely additive measure on the subalgebra generated by $\lambda_1, \dots, \lambda_n$, which assigns each A_{λ_j} to λ_j . Since the subalgebra is homomorphic image of the whole algebra (see [2, p. 141]), the measure can be extended over the latter. Now standard arguments based on the weak compactness of the set of positive contractions show that $\mathfrak A$ is contained in the range of a normalized, positive operator valued, finitely additive measure on the Boolean algebra. Then the famous theorem of Naimark ([1], [3]) guarantees that a 1-decomposable family admits a commutative family of dilations, consisting of projections, so that it is of $\{0, 1\}$ type.

Conversely if a finite family $\{A_1, \dots, A_n\}$ of positive operators admits a commutative family $\{T_1, \dots, T_n\}$ of dilations, consisting of positive contractions on a superspace, then the family of products $P \cdot B_1 \cdot B_n \cdot P$'s gives a 1-decomposition of $\{A_1, \dots, A_n\}$, where P is the projection onto \mathfrak{P} , and $B_j = T_j$ or $= I - T_j$, because the positivity of a product $B_1 \cdot B_n$ is a consequence of the commutativity among T's. Summing up, we obtain

Theorem 1. A family $\mathfrak A$ of operators is of $\langle \alpha, \beta \rangle$ type if and only if $\mathfrak A - \alpha I$ is $(\beta - \alpha)$ -decomposable.

If \mathfrak{A}_1 and \mathfrak{A}_2 are γ_1 - and γ_2 -decomposable respectively, both $\mathfrak{A}_1 \cup \mathfrak{A}_2$ and $\mathfrak{A}_1 + \mathfrak{A}_2$ are $(\gamma_1 + \gamma_2)$ -decomposable. Thus with use of appropriate homotheties, we can prove

Corollary. If \mathfrak{A}_1 and \mathfrak{A}_2 are of $\langle \alpha_1, \beta_1 \rangle$ and $\langle \alpha_2, \beta_2 \rangle$ type respectively, both $\mathfrak{A}_1 \cup \mathfrak{A}_2$ and $\mathfrak{A}_1 + \mathfrak{A}_2$ are of $\langle \alpha, \beta \rangle$ type, where either $\alpha = \min(\alpha_1, \alpha_2)$ and $\beta = \beta_1 + \beta_2 - \alpha$ or $\beta = \max(\beta_1, \beta_2)$ and $\alpha = \alpha_1 + \alpha_2 - \beta$.

In particular, if the sum of norms of all members of \mathfrak{A} is bounded by γ , it is of $\langle -2\gamma, 2\gamma \rangle$ type, because the family of positive (and negative) parts of members is obviously γ -decomposable (cf. [3]).

Theorem 2. Let \mathfrak{A}_1 and \mathfrak{A}_2 be of $\langle \alpha_1, \beta_1 \rangle$ and $\langle \alpha_2, \beta_2 \rangle$ types respectively. If every member of \mathfrak{A}_2 commutes with all of $\mathfrak{A}_1 \cup \mathfrak{A}_2$, then $\mathfrak{A}_1 \cup \mathfrak{A}_2$ is of $\langle \alpha, \beta \rangle$ type with $\alpha = \min(\alpha_1, \alpha_2)$ and $\beta = \max(\beta_1, \beta_2)$.

In fact, by Theorem 1, the commutativity assumption, and inductive observation we can assume that \mathfrak{A}_1 is a finite family, say $\{A_1, \dots, A_n\}$, and \mathfrak{A}_2 consist of a single member, say B, and further that $\alpha_1 = \alpha_2 = 0$ and $\beta_1 = \beta_2 = 1$. Let $\{C_1, \dots, C_m\}$ be a 1-decomposition of $\{A_1, \dots, A_n\}$, then D's defined by

$$D_{2j} = B^{\frac{1}{2}} \cdot C_j \cdot B^{\frac{1}{2}}$$
 and $D_{2j-1} = (I - B)^{\frac{1}{2}} \cdot C_j \cdot (I - B)^{\frac{1}{2}}$

give a 1-decomposition of $\{A_1, \dots, A_n, B\}$, because

$$A_i\!=\!B^{\!\frac{1}{2}}\!\cdot\!A_i\!\cdot\!B^{\!\frac{1}{2}}\!+\!(I\!-\!B)^{\!\frac{1}{2}}\!\cdot\!A_i\!\cdot\!(I\!-\!B)^{\!\frac{1}{2}}$$

by the commutativity of A_i with $B^{\frac{1}{2}}$ and $(I-B)^{\frac{1}{2}}$.

A pair $\{A, B\}$ of positive contractions is of $\langle -1, 1 \rangle$ type, because $\{I-A, I-B\}$ is of $\langle 0, 2 \rangle$ type. $\{A, B\}$ is, however, not necessarily of $\langle 0, 1 \rangle$ type. In this respect the following theorem is of some interest.

Theorem 3. Let A and B be a projection and a positive contraction respectively. If $\{A, B\}$ is of $\langle 0, 1 \rangle$ type, A commutes with B.

In fact, since $\{A,B\}$ is 1-decomposable, there are positive operators C and D such that

$$0 \le C \le A$$
, $0 \le D \le I - A$, and $B = C + D$.

Since Af=0 implies Cf=0 and A is a projection, it follows $C=C\cdot A$,

hence A commutes with C. In a similar way, I-A commutes with D. Thus A commutes with B.

References

- [1] M. A. Naimark: On a representation of additive operator set functions. Dokl. Akad. Nauk SSSR, 41, 359-361 (1943).
- [2] P. R. Halmos: Lectures on Boolean Algebra. New York (1963).
- [3] B. Sz.-Nagy: Extensions of linear transformations in Hilbert space which extend beyond this space; Appendix to "Functional Analysis" by F. Riesz and B. Sz.-Nagy, New York (1960).