249. Note on the Representation of Semi-Groups of Non-Linear Operators

By Shinnosuke ÔHARU

Waseda University

(Comm. by Kinjirô Kunugi, M.J.A., Dec. 12, 1966)

- 1. Let X be a Banach space and let $\{T(\xi)\}_{\xi\geq 0}$ be a family of non-linear operators from X into itself satisfying the following conditions:
 - (1) T(0) = I, $T(\xi)T(\eta) = T(\xi + \eta)$ $\xi, \eta \ge 0$,
 - (2) $||T(\xi)x T(\xi)y|| \le ||x y||$ $\xi > 0, x, y \in X,$
- (3) There exists a dense subset D in X such that for each $x \in D$, the right derivative

$$D_{\xi}^{+}T(\xi)x = \lim_{h \to 0+} h^{-1}(T(\xi+h)x - T(\xi)x)$$

exists and it is continuous for $\xi \ge 0$. Then we shall call this family $\{T(\xi)\}_{\xi \ge 0}$ a non-linear contraction semi-group.

Definition. We define the infinitesimal generator A of a non-linear contraction semi-group $\{T(\xi)\}_{\xi\geq 0}$ by

$$Ax = \lim_{h \to 0+} A_h x$$

whenever the limit exists, where $A_h = h^{-1}(T(h) - I)$. We denote the domain of A by D(A).

Lately J. W. Neuberger [1] gave the following result: If $\{T(\xi)\}_{t\geq 0}$ is a non-linear contraction semi-group,*) then for each $x\in X$ and each $\xi\geq 0$

$$\lim_{n\to\infty} \limsup_{\delta\to 0+} || (I-(\xi/n)A_{\delta})^{-n}x - T(\xi)x|| = 0.$$

It is well known that if $\{T(\xi)\}_{\xi\geq 0}$ is a linear contraction semi-group of class (C_0) , then for each $x\in X$ and each $\xi\geq 0$

$$\lim (I-(\xi/n)A)^{-n}x=T(\xi)x$$

(see [2]). In this paper we shall give the representation of this type for non-linear contraction semi-groups.

The main results are the follwing

Theorem. Let $\{T(\xi)\}_{\xi\geq 0}$ be a non-linear contraction semi-group and let A be the infinitesimal generator such that $\Re(I-\xi_0A)=X$ for some $\xi_0>0$. Then for each $\xi>0$ there exists an inverse operator $(I-\xi A)^{-1}$ and its unique extension $L(\xi)$ onto X, which is a contraction operator, and $T(\xi)$ is represented by

^{*)} In his paper the following condition is assumed:

^{(3)&#}x27; There is a dense subset D of X such that if x is in D, then the derivative $T'(\xi)x$ is continuous with domain $[0, \infty)$.

$$\lim L(\xi/n)^n x = T(\xi)x$$
 $\xi \ge 0, x \in X,$

where for each fixed $x \in X$ the convergence is uniform for any compact set in $[0, \infty)$ and for each fixed $\xi \ge 0$ it is the continuous convergence on X. Moreover, there exists a unique mapping \widetilde{A} , which is not necessarily one-valued, defined on a region $\widetilde{D} \supset D(A)$ such that

- (1) the mapping $\widetilde{D}\ni x{\longrightarrow} x-\xi\widetilde{A}x$ is the topological inverse mapping of $L(\xi)$,
 - (2) $\widetilde{A}x \ni Ax$ for each $x \in D(A)$,
- (3) for any $x \in \widetilde{D}$ there exists a sequence $\{x_n\} \subset D(A)$ such that $\lim x_n = x$ and $\lim Ax_n \in \widetilde{A}x$.

Corollary 1. If \widetilde{A} is one-valued, then in the above Theorem $L(\xi) = (I - \xi \widetilde{A})^{-1}$ and \widetilde{A} is the closure of A in the sense that the graph $G(\widetilde{A})$ of \widetilde{A} is the closure of the graph G(A) in $X \times X$.

Corollary 2. If $\Re(I-\xi_0A)=X$ for some $\xi_0>0$, then $\widetilde{A}=A$ in the above Corollary 1.

2. We shall prove the theorems mentioned above by the following successive lemmas:

Lemma 1. $D(A)\supset D$, $D(A)\supset T(\xi)[D]$ for each $\xi\geq 0$. And the left derivative also exists, and is equal to the right one and

$$\frac{d}{d\xi}T(\xi)x = AT(\xi)x$$

on $(0, \infty)$ for each $x \in D$.

Proof. The first relations of inclusion follow immediately from the condition (3). It follows from

$$||T(\xi \pm h)x - T(\xi)x|| \leq ||T(h)x - x|| \qquad (x \in D)$$

and the denseness of D that for any $x \in X$, $T(\xi)x$ is strongly continuous on $[0, \infty)$. Therefore by the same argument as in the linear case we get the above conclusions (see [3]; p. 239). Q.E.D.

Under the conditions (1)-(3) and by virtue of Lemma 1, we can apply the Neuberger's results and get the following

Lemma 2. For each $\xi>0$ and $\delta>0$, $(I-\xi A_{\delta})^{-1}$ exists on X and is a contraction operator in the sense that

$$||(I - \xi A_{\delta})^{-1}x - (I - \xi A_{\delta})^{-1}y|| \le ||x - y||$$
 $x, y \in X_{\delta}$

Lemma 3. For each $\xi>0$, $(I-\xi A)^{-1}$ exists on $\Re(I-\xi A)$ and contraction operator there. And if $\Re(I-\xi A)$ is dense in X, then the family $\{(I-\xi A_{\delta})^{-1}\}_{\delta>0}$ of contraction operators converges to some contraction operator $L(\xi)$ defined on X onto some region $\widetilde{D}_{\xi}\supset D(A)$. This $L(\xi)$ is a unique extension of $(I-\xi A)^{-1}$.

Proof. Let $\tau(x, y)$ be defined by $\lim_{x\to 0+} a^{-1}\{||x+ay||-||x||\}$. This always exists for each $x, y \in X$ and has the following properties $\lceil 4 \rceil$:

- (i) $|\tau(x, y)| \leq ||y||$,
- (ii) $\tau(x, y+z) \leq \tau(x, y) + \tau(x, z)$,
- (iii) $\tau(x, \lambda x + cy) = \Re_{e}(\lambda) ||x|| + c\tau(x, y)$ $(c \ge 0).$

Using these properties, for any $u, v \in D(A)$ and $\delta > 0$ we have

$$\tau(u-v, A_{\delta}u-A_{\delta}v) = \tau\left(u-v, \frac{T(\delta)u-T(\delta)v}{\delta} - \frac{u-v}{\delta}\right)$$

$$\leq \tau(u-v, \delta^{-1}(T(\delta)u-T(\delta)v) - \delta^{-1}||u-v||$$

$$\leq \delta^{-1}\{||T(\delta)u-T(\delta)v|| - ||u-v||\} \leq 0.$$

From the continuity of $\tau(u-v,\cdot)$ we have $\tau(u-v,Au-Av)\leq 0$ for each $u,v\in D(A)$. Thus we have again from (i), (ii), and (iii) the following estimate for any $u,v\in D(A)$:

$$||(I-\xi A)u - (I-\xi A)v|| \ge \tau(u-v, (u-v) - \xi(Au - Av))$$

$$\ge ||u-v|| - \xi \tau(u-v, Au - Av) \ge ||u-v||,$$

which implies the first assertion. For any $x \in \Re(I - \xi A)$ we have, from Lemma 2,

$$|| (I - \xi A_{\delta})^{-1} x - (I - \xi A)^{-1} x ||$$

 $\leq || (I - \xi A) (I - \xi A)^{-1} x - (I - \xi A_{\delta}) (I - \xi A)^{-1} x ||$
 $= \xi || A_{\delta} (I - \xi A)^{-1} x - A (I - \xi A)^{-1} x || \to 0 \text{ as } \delta \to 0.$

Thus we have

$$\lim_{\delta \to 0} (I - \xi A_{\delta})^{-1} x = (I - \xi A)^{-1} x \tag{*}$$

for any $x \in \Re(I-\xi A)$. On the other hand, each $(I-\xi A_{\delta})^{-1}$ is a contraction operator defined on X from Lemma 2, and so, combining with (*) and the denseness of $\Re(I-\xi A)$, it follows that the family $\{(I-\xi A_{\delta})^{-1}\}_{\delta>0}$ converges to some contraction operator $L(\xi)$ defined on X and that this $L(\xi)$ is the unique extension of $(I-\xi A)^{-1}$. Q.E.D.

Lemma 4. If $\Re(I-\xi_0A)=X$ for some $\xi_0>0$, then $\Re(I-\xi A)=X$ for any $\xi>0$. And if $\Re(I-\xi_0A)=X$ for some $\xi_0>0$, then $\Re(I-\xi A)=X$ for any $\xi>0$.

Proof. Since $\overline{\Re(I-\xi_0A)}=X$, from Lemma 3 there exists a unique extension $L(\xi_0)$ of $(I-\xi_0A)^{-1}$, which is also a contraction. Changing $I-\xi A$ to the form

$$I - \xi A = \frac{\xi}{\xi_0} \left[I - \left(1 - \frac{\xi_0}{\xi} \right) L(\xi_0) \right] (I - \xi_0 A);$$

for any $x \in X$, we put $Ky = x + (1 - (\xi_0/\xi))L(\xi_0)y$ for each $y \in X$. Then K becomes a contraction mapping for ξ with $(\xi_0/2) < \xi$, since $||Ky - Ky'|| \le |1 - (\xi_0/\xi)| \cdot ||y - y'||$. Thus there exists a unique fixed point z of K; Kz = z, and so we have

$$x = z - (1 - (\xi_0/\xi))L(\xi_0)z = [1 - (1 - (\xi_0/\xi))L(\xi_0)]z$$
.

Since $\Re(I-\xi_0A)=X$, there exists a sequence $\{x_n\}\subset\Re(I-\xi_0A)$ such that $\lim x_n=z$. Putting $y_n=(I-\xi_0A)^{-1}x_n$, we have

$$\frac{\xi}{\xi_0} \left[I - \left(1 - \frac{\xi_0}{\xi} \right) L(\xi_0) \right] x_n = \frac{\xi}{\xi_0} \left[I - \left(1 - \frac{\xi_0}{\xi} \right) L(\xi_0) \right] (I - \xi_0 A) y_n = (I - \xi A) y_n,$$

where the left hand side tends to $(\xi/\xi_0)x$ as $n\to\infty$. Therefore it follows that $\Re(I-\xi A)=X$ for all $\xi>(\xi_0/2)$. Thus in particular $\Re(I-(2\xi_0/3)A)=X$. Again change the $I-\xi A$ to the form

$$I - \xi A = (3\xi/2\xi_0)[I - (1 - (2\xi_0/3\xi))L(2\xi_0/3)](I - (2\xi_0/3)A).$$

For any $x \in X$, putting $K_1y = x + (1 - (2\xi_0/3\xi))L(2\xi_0/3)y$ for each $y \in X$, K_1 becomes a contraction mapping for ξ with $(\xi_0/3) < \xi$. In the similar way as in the abovementioned we have $\overline{\Re(I-\xi A)} = X$ for $\xi > (\xi_0/3)$. Inductively we can prove $\overline{\Re(I-(\xi_0/k)A)} = X$ $(k=3,4,5,\cdots)$ and thus we have $\overline{\Re(I-\xi A)} = X$ for $\xi > 0$. The last assertion is now evident. Q.E.D.

By virtue of this Lemma 4, we assume in the following Lemmas that $\Re(I-\xi_0A)=X$ for some $\xi_0>0$, which insures the existence of the limit operator $L(\xi)$ for each $\xi>0$ (by Lemma 3).

Lemma 5. The relation

$$L(\xi) \! \left[\frac{\xi}{\xi'} y + \frac{\xi' - \xi}{\xi'} L(\xi') y \right] \! = \! L(\xi') y$$

holds for any $y \in X$ and $\xi, \xi' > 0$. And $L(\xi)[X] = L(\xi')[X]$ for any $\xi, \xi' > 0$. In particular, \tilde{D}_{ξ} of Lemma 3 is independent of $\xi > 0$.

Proof. For any $\delta > 0$, $\xi, \xi' > 0$ and $y \in X$, we have

$$(I - \xi' A_{\delta})^{-1} y = (I - \xi A_{\delta})^{-1} \left[\frac{\xi' - \xi}{\xi'} (I - \xi' A_{\delta})^{-1} y + \frac{\xi}{\xi'} y \right]$$

and thus

$$\begin{split} & \left\| L(\xi')y - L(\xi) \left[\frac{\xi' - \xi}{\xi'} L(\xi')y + \frac{\xi}{\xi'} y \right] \right\| \leq ||L(\xi')y - (I - \xi' A_{\delta})^{-1}y|| \\ & + \left\| (I - \xi A_{\delta})^{-1} \left[\frac{\xi' - \xi}{\xi'} (I - \xi' A_{\delta})^{-1}y + \frac{\xi}{\xi'} y \right] - (I - \xi A_{\delta})^{-1} \left[\frac{\xi' - \xi}{\xi'} L(\xi')y + \frac{\xi}{\xi'} y \right] \right\| \\ & + \left\| (I - \xi A_{\delta})^{-1} \left[\frac{\xi' - \xi}{\xi'} L(\xi')y + \frac{\xi}{\xi'} y \right] - L(\xi) \left[\frac{\xi' - \xi}{\xi'} L(\xi')y + \frac{\xi}{\xi'} y \right] \right\|. \end{split}$$

Passing to the limit as $\delta \to 0$, we have the required relation for each $y \in X$. From this it follows that $L(\xi')[X] \subset L(\xi)[X]$ for any $\xi, \xi' > 0$ and thus we have $L(\xi')[X] = L(\xi)[X]$. The last assertion is now evident. Q.E.D.

By virtue of this Lemma, we denote the set $L(\xi)[X] = \widetilde{D}_{\xi}$, independent of $\xi > 0$, by \widetilde{D} .

Lemma 6. For any $\xi, \xi' > 0$ we have the relation of inclusion: $\frac{1}{\xi}(x - L(\xi)^{-1}x) = \frac{1}{\xi'}(x - L(\xi')^{-1}x) \subset X, \ x \in \widetilde{D}, \ \ where \ \ L(\xi)^{-1} \ \ is \ the \ topological inverse mapping of <math>L(\xi)$.

Proof. It suffices to prove that for any $x \in \widetilde{D}$, ξ , $\xi' > 0$ $\xi^{-1}(x - L(\xi)^{-1}x) \supseteq \xi'^{-1}(x - L(\xi')^{-1}x)$.

From Lemma 5, $L(\xi)^{-1}L(\xi)\left[\frac{\xi}{\xi'}y+\frac{\xi'-\xi}{\xi'}L(\xi')y\right]=L(\xi)^{-1}L(\xi')y$. Thus

 $L(\xi)^{-1}L(\xi')y\ni\frac{\xi}{\xi'}y+\frac{\xi'-\xi}{\xi'}L(\xi')y \text{ for each }y\in X. \text{ Therefore we have } L(\xi')y-y\in(\xi'/\xi)L(\xi')y-(\xi'/\xi)L(\xi)^{-1}L(\xi')y \text{ for each }y\in X. \text{ And for any } u\in L(\xi')^{-1}x \text{ we have }$

$$\begin{split} \xi^{-1}(x-L(\xi)^{-1}x) &= \xi^{-1}(L(\xi')u-L(\xi)^{-1}L(\xi')u) \\ &= \xi'^{-1}((\xi'/\xi)L(\xi')u-(\xi'/\xi)L(\xi)^{-1}L(\xi')u). \end{split}$$

From this and the abovementioned it follows that the above right hand side contains the element $\xi'^{-1}(L(\xi')u-u)$, which implies the required relation of inclusion. Q.E.D.

Lemma 7. The not necessarily one valued mapping \widetilde{A} is defined on \widetilde{D} by

$$\widetilde{A}x = \xi^{-1}(x - L(\xi)^{-1}x) \subset X$$
 $x \in \widetilde{D}$,

which has the properties (1)-(3) mentioned in the main theorem.

Proof. Such an operator \widetilde{A} is well defined by Lemma 6. For each $x \in \widetilde{D}$ we have

$$\xi \widetilde{A}x = x - L(\xi)^{-1}x \subset X$$
 and so, $x - \xi \widetilde{A}x = L(\xi)^{-1}x \subset X$.

But since $L(\xi)[x-\xi \widetilde{A}x]=L(\xi)[L(\xi)^{-1}x]=x$, the mapping $x{\longrightarrow}x-\xi \widetilde{A}x$ is the topological inverse mapping of $L(\xi)$, which implies (1). Since $L(\xi)$ is the unique extension of $(I-\xi A)^{-1}$ by Lemma 3, $L(\xi)(I-\xi A)x=x$ for each $x\in D(A)$ and thus $L(\xi)^{-1}x=x-\xi \widetilde{A}x\ni (I-\xi A)x$, from which $\widetilde{A}x\ni Ax$. Thus (2) is proved. Finally we shall prove (3). For any $x\in \widetilde{D}$ there exists $x'\in X$ such that x=L(1)x'. Since $\Re(I-A)$ is dense in X, there exists a sequence $\{x_n\}\subset D(A)$ such that $(I-A)x_n{\longrightarrow}x'$ as $n{\longrightarrow}\infty$. Thus $x_n=L(1)(I-A)x_n{\longrightarrow}L(1)x'=x$ and so, $Ax_n=x_n-(I-A)x_n{\longrightarrow}x-x'\in x-L(1)^{-1}x=\widetilde{A}x$. Q.E.D.

Lemma 8. For each $\xi \geq 0$, $\{L(\xi/n)^n\}$ converges continuously to $T(\xi)$ on X and for each $x \in X$, $\{L(\xi/n)^n x\}$ converges to $T(\xi)x$ uniformly in ξ for any compact subset in $[0, \infty)$.

Proof. Since $T'(\xi)x = AT(\xi)x$ for each $x \in D$ from Lemma 1, we have the following estimate:

$$\begin{split} &|| \ L(\xi/n)^n x - T(\xi)x \ || \\ &= || \ L(\xi/n)^n x - T(\xi/n)^n x \ || \\ &\leq \sum_{i=1}^n || \ L(\xi/n)^{n-i+1} T(\xi(i-1)/n) x - L(\xi/n)^{n-i} T(\xi i/n) x \ || \\ &\leq \sum_{i=1}^n || \ L(\xi/n) T(\xi(i-1)/n) x - L(\xi/n) (I - (\xi/n)A) T(\xi i/n) x \ || \\ &\leq \sum_{i=1}^n || \ L(\xi/n) T(\xi(i-1)/n) x - L(\xi/n) (I - (\xi/n)A) T(\xi i/n) x \ || \\ &\leq \sum_{i=1}^n (\xi/n) \ || \ A_{\frac{\varepsilon}{n}} T(\xi(i-1)/n) x - A T(\xi i/n) x \ || \\ &= \sum_{i=1}^n (\xi/n) \ || \ (\xi/n)^{-1} (T(\xi i/n)) - T(\xi(i-1)/n) x - A T(\xi i/n) x \ || \\ &\leq (\xi/n) \sum_{i=1}^n (\xi/n)^{-1} \int_{\frac{\xi i}{n}}^{\frac{\varepsilon i}{n}} || \ T'(\sigma) x - T'(\xi i/n) x \ || d\sigma \\ &\leq \xi \max_{1 \leq i \leq n} \max_{\sigma \in \left[\frac{\varepsilon(i-1)}{n}, \frac{\xi i}{n}\right]} || \ T'(\sigma) x - T'(\xi i/n) x \ ||. \end{split}$$

The above right hand tends to 0 as $n \to \infty$, since $T'(\sigma)x$ is uniformly continuous on $[0, \xi]$. Thus $\lim_{n \to \infty} L(\xi/n)^n x = T(\xi)x$ for each $x \in D$. On the other hand, $L(\xi/n)^n$ is a contraction operator for each n. And so, $\{L(\xi/n)^n\}$ converges continuously to $T(\xi)$ on X [5]. Moreover the uniform convergence in ξ for any compact subset of $[0, \infty)$ is evident from the abovementioned estimate. Q.E.D.

Finally the author expresses his sincere thanks to Professor I. Miyadera for many useful advices.

References

- [1] J. W. Neuberger: An exponential formula for one-parameter semi-groups of non-linear transformations. J. Math. Soc. Japan, 18(2), 154-157, (1966).
- [2] E. Hille and R. S. Phillips: Functional analysis and semi-groups. American Math. Soc. (1957).
- [3] K. Yosida: Functional Analysis. Berlin-Heidelberg-New York: Springer (1965).
- [4] M. Hasegawa: On contraction semi-groups and (di)-operators. J. Math. Soc. Japan, 18(3), 303-330 (1966).
- [5] W. Rinow: Die Innere Geometrie der Metrischen Räume. Berlin-Göttingen-Heidelberg: Springer (1961).