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1. Let X be a Banach space and let {T(£)}.s, be a family of
non-linear operators from X into itself satisfying the following
conditions:

(1) TO=I T Tw)="TE+n) & 120,

(2) 1T@x—TEylslle—yll §>0,2,yeX,

(3) There exists a dense subset D in X such that for each
x € D, the right derivative

D T(6) Z;}-l-»l;r-lr h(T(E + h)x— T(&)w)

exists and it is continuous for £=0. Then we shall call this family
{T(&)}ezo @ non-linear contraction semi-group.

Definition. We define the infinitesimal generator A of a
non-linear contraction semi-group {T(&)}e=, by

Ax=1lim A,x
h—0+

whenever the limit exists, where A,=h ' (T(h)—1I). We denote the
domain of A by D(A).

Lately J. W. Neuberger [1] gave the following result: If
{T(&)}ezo is a non-linear contraction semi-group,*’ then for each ze X
and each £=0

lim lisrgoﬁup | (I —(&/n)As)~"x— T(§)x || =0.

It is well known that if {T(&)}.., is a linear contraction semi-

group of class (C,), then for each z e X and each £=0
lim(I—(§/n)A)y"x=T(§)x

(see [2]). In this paper we shall give the representation of this
type for non-linear contraction semi-groups.

The main results are the follwing

Theorem. Let {T(¢&)}:z0 be a non-linear contraction semi-group
and let A be the infinitesimal generator such that R(I—E£A)=X
for some &>0. Then for each &>0 there exists an inverse operator
(I—¢A)™ and its unique extension L(E) onto X, which is a contrac-
tion operator, and T(&) is represented by

*) In his paper the following condition is assumed:
(3)) There is a dense subset D of X such that if ¢ is in D, then the derivative
T'(&)x is continuous with domain [0, «).
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lim L(g/n)"x= T(&)x £=20,2e X,

where for each fixed x e X the convergence is uniform for any com-
pact set in [0, oo0) and for each fixed £€=0 it is the continuous
convergence on X. Moreover, there exists a unique mapping A,
which s mot nmecessarily ome-valued, defined on a region D> D(A)
such that

(1) the mapping D> x—x — EAx is the topological inverse mapp-
ing of L),

(2) Ax>sAx for each x e D(A),

(8) for any e D there exists a sequence {x,}CD(A) such that
lim%,=% and lim Az, ¢ Ax.

Corollary 1. If A is one-valued, then in the above Theorem
L&) =(I—¢A)" and A is the closure of A in the semse that the
graph G(A) of A is the closure of the graph G(A) in X x X.

Corollary 2. If R(I—&A4)=X for some £>0, then A=A in
the above Corollary 1.

2. We shall prove the theorems mentioned above by the following
successive lemmas:

Lemma 1. D(A)DD, D(A)D T D] for each £=0. And the
left derivative also exists, and is equal to the right one and

d _
dE T(E)x=AT(é)

on (0, o) for each xe D,
Proof. The first relations of inclusion follow immediately from
the condition (3). It follows from
| TE+he—TEw ||| Tz —a | (@e D)
and the denseness of D that for any xe X, T(&)x is strongly con-
tinuous on [0, o). Therefore by the same argument as in the linear
case we get the above conclusions (see [3]; p. 239). Q.E.D.
Under the conditions (1)-(3) and by virtue of Lemma 1, we can
apply the Neuberger’s results and get the following
Lemma 2. For each £>0 and 6>0, (I—£A;s)™" exists on X and
18 a contraction operator im the semse that
NI—§A) e —(I—E4) Wl e —y || v,y e X,
Lemma 3. For each &>0,(I—¢(A)™" exists on RI—EA) and
contraction operator there. And if R(I—EA) is dense in X, then
the family {(I—&As)"}s»0 of contraction operators converges to some
contraction operator L(&) defined on X onto some region D,D>D(A).
This L(&) s a unique extension of (I—&A)™".
Proof. Let z(x, y) be defined by }il([)ﬁl o Y||x+ay||—]||«|]}. This

always exists for each «, y € X and has the following properties [4]:
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(i) |z, »)I=llyll,
(i) @, y+2)=(, y)+7(, 2),
(i) (@, w+ey)=R,Al«||+cr(@,y)  (c=0).
Using these properties, for any u, v e D(A) and 6>0 we have
T(u—w, Asu—Asv)=r<u~v, T(S)u—a—T(B)v - ugv )
<t(u—v, 0~ (T(@0)u— TO)w)—oY|u—2v||
oYl T@u—TEw||—|lu—v[[}=0.
From the continuity of t(u—wv, -) we have t(u—wv, Au—Av)<0 for
each u,ve D(A). Thus we have again from (i), (ii), and (iii) the
following estimate for any u, v € D(4):
(I—gAu—(I—-EAw|[zt(u—v, (u—v)—E(Au— Av))
zlu—v||—ér(u—v, Au—Av)=|ju—v|l,
which implies the first assertion. For any xeR(I—£A) we have,
from Lemma 2,
| (-84~ w—(I—-§A) " ||
S|T-EA)T—A) e —(I—EA)(I—EA) ' ||
=¢ || As([—EA) "o — A(I—EA) "z ||[—0 as 6—0.
Thus we have

m (I—¢4,)"w=(I-6A)"w *)
for any v e R(I—£A). On the other hand, each (I—£&A4,) is a con-
traction operater defined on X from Lemma 2, and so, combining
with (*) and the denseness of R(I—&A), it follows that the family
{(I—&A;)}s5, converges to some contraction operator L(¢) defined on
X and that this L(¢) is the unique extension of (I—£A4)~. Q.E.D.

Lemma 4. If R(I—-§A)=X for some &>0, then R(UI—EA)=X
for any £>0. Andif R(I-EA)=X for some &>0, then R(I—EA)
=X for any £>0.

Proof. Since R(I—&,4)=X, from Lemma 3 there exists a unique
extension L(§,) of (I—&,4)~', which is also a contraction. Changing
I—¢A to the form

- sA:%[I—@-%)L(SO)}(I—SOA);

for any v ¢ X, we put Ky=a+1—(&/8))L(&)y for each ye X. Then
K becomes a contraction mapping for & with (§/2)<¢&, since
| Ky—Ky'||=|1—-(5/8) |-]ly—¥y'|l. Thus there exists a unique fixed
point z of K; Kz=z, and so we have

v=2—(1—(&/8))L()2=[1— 1 — (/&) L(&) 2.
Since R(I—¢,4)=X, there exists a sequence {x,}CR(I—&A) such
that lim«,=2. Putting y,={T—&4)"x,, we have

n—

5_0[1_21 ~E3166 Jou =& [ 1- (1= ) 266 - e =1 e,
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where the left hand side tends to (&/&,)x as n—oo. Therefore it follows

that R(I—£A4)=X for all £>(&,/2). Thus in particular R(I—(25,/3)A)
=X. Again change the I—£A to the form

I—EA=(35/25)[ I —(1—(28,/38))L(2£,/3)J(I—(2&,/3)A).

For any e X, putting K,y=x+(1—(2&,/38))L(2£,/3)y for each ye X,

K, becomes a contraction mapping for & with (£&,/3)<&. In the similar

way as in the abovementioned we have R(I—£A)=X for &>(&/3).

Inductively we can prove R(I—(§,/k)A)=X (k=38,4,5, --+) and thus

we have R(I—£A)=X for £>0. The last assertion is now evident.

Q.E.D.

By virtue of this Lemma 4, we assume in the following Lemmas

that R(I—£&,4)=X for some &>0, which insures the existence of
the limit operator L(&) for each £>0 (by Lemma 3).
Lemma 5. The relation

L] St Lew [ =Lew

holds for any ye X and $,$'>O. And LE[X])=LENX] for any
g,&>0. In particular, D, of Lemma 3 is independent of &>0.
Proof. For any 6>0, & &>0 and yc X, we have

O O e O ]

and thus
Lew-LE) S L@+ So |l Lew—a-sany|

+a-ean{FEa-sany+ Sy ] - a-ean{ L Lew+ S|

+ (I—EAs)“‘[%,—E—L(E’)y-I— fvl]- L(é‘)[S —¢ L@+ g,y]”.

Passing to the limit as 6—0, we have the required relation for each
ye X. From this it follows that L(&)[ X]cL(&)[X] for any &, &>0

and thus we have L(&)[X]=L(&§)[X]. The last assertion is now
evident. Q.E.D.

By virtue of this Lemma, we denote the set L(£)[X]1=D,,
independent of £>0, by D.
Lemma 6. For any &,&>0 we have the relation of inclusion:

%(x —L(&)x)= é(x — L&) X, xeD, where L&)~ is the topo-

logical inverse mapping of L(&). 5
Proof. It suffices to prove that for any xe D, &, & >0
7w — L(§) ') 28"z — L(&")"x).

From Lemma 5, L(S)“lL(E)I: y+5 gL(S )y} L()™L(&)y. Thus
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L&) L(&)y a§y+§’%‘sL(E’)y for each ye X. Therefore we have

L&y —y e (&/5LE )y — ([ L(E) L&)y for each y e X. And for any
u € L&) ¢ we have
§7w— L(§)~w) =& (L(&)u— L(§)L(§)u)
=& (¢ LN w— (&' /&) L(E) " L(&"w).

From this and the abovementioned it follows that the above right
hand side contains the element &~'(L(&)u—w), which implies the
required relation of inclusion. Q.E.D.

Lemma 7. The mot mecessarily one valued mapping A is
defined on D by

Ap=&"(x—LE)"2)cX xeD,

which has the properties (1)-(3) mentioned in the main theorem.

Proof. Such an operator A is well defined by Lemma 6. For
each xcD we have

gAr=0— L) "2cX and so, o —E&Ax=L(&) v X.

But since L(&)[x—&Ax]=L(&)[L(&)x]=x, the mapping z—a—EAx
is the topological inverse mapping of L(&), which implies (1). Since
L(&) is the unique extension of (I—£A)™* by Lemma 3, L(&)(I—&A)x
=« for each xeD(A) and thus L(&)‘x=x—E&Ax>([—£A)x, from
which Az > Ax. Thus (2) is proved. Finally we shall prove (3).
For any x € D there exists o’ € X such that x=L(1)a’. Since R(I—A)
is dense in X, there exists a sequence {x,}cD(A) such that
(I—-A)x,—x" as n—oo, Thus x,=LQA)I-—A)x,—L1)x'=2 and so,
Az, =x,—(I—A)x,—x—2 € x— L) "a=Ax. Q.E.D.

Lemma 8. For each £€=0, {L(é/n)"} converges continuously to
T(&) on X and for each x € X, {L(&/n)"x} converges to T(&)x uniformly
in & for any compact subset in [0, o),

Proof. Since T'(&)x=AT(&)x for each xeD from Lemma 1,
we have the following estimate:

I L(§/n) e — T(&)x ||
=|| L(¢/n)"x— T(§/n)"x ||

= i | L(&/my =+ T(§(i — 1)/m)w — L(¢/m)" T(&i/m)x ||

= 2 I L(E/m) TG —1)/n)e— L(E/n)I— (§/m)A) T(Ei/n)x ||

S (E/m) | As TG —1)/m)w— ATl |
S (

IA

I

/) | (§/m)~(T(Ei/m)) — T(E(i—1)fmy — AT(Eifmye |
&) 5 @my 5, 1| T — T/ |do

IA

IA

émax max || T'(o)x— T'(&i/n)x||.
1sis=n a'el: €(i;1) ’%]
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The above right hand tends to 0 as n—oo, since T'(0)x is uniformly
continuous on [0, £]. Thus hm L(&/n)"x=T(&)x for each xe D. On

the other hand, L(&/n)" is a ‘contraction operator for each n. And
80, {L(&/n)"} converges continuously to T(£) on X [5]. Moreover the
uniform convergence in & for any compact subset of [0, co) is
evident from the abovementioned estimate. Q.E.D.

Finally the author expresses his sincere thanks to Professor I.

Miyadera for many useful advices.
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