No. 2] Proc. Japan Acad., 43 (1967) it

17. On a Theorem Concerning
Trigonometrical Polynomials

By Masako Izumi and Shin-ichi Izumi

Department of Mathematics, Institute of Advanced Studies,
Australian National University, Canberra, Australia

(Comm. by Zyoiti SUETUNA, M.J.A., Feb. 13, 1967)

§1. H. Davenport and H. Halberstan [1] have proved the
following theorem from which they have derived a generalization
of theorems of K. F. Roth [2] and E. Bombieri [3] on the large

sieve:
Thoerem DH1." Let S,(x) be a trigonometrical polynomial of

order N such that
Sy(@)= 3} c.e

n=—N

and %, x,, ---, € (R=2) be distinct points on (—=, 7) such that
20=min | x;—x, |.
ik
Then
(1) 311 Sy(®,) F<4-4 max (N, 7/20)
r=1
QOur first theorem is as follows:

Theorem 1. Using the same notation as in Theorem DH1, we
have
R N
(2) 2 | Su(=,) F=4 > le. [
for small 6, where A=<2.34 (N+7x/d) or A=3.13 (N+m/20).

The inequalities (1) and (2) are mutually exclusive. If N is
near to m/25, then (1) is better than (2), but if they are very dif-
ferent, then (2) is better than (1), except for “small §.”

Further H. Davenport and H. Halberstan [17] proved the following

Theorem DH2. Using the same notation as in Theorem DHI,
we have

(3)  3}ISu@) P=AVp max (N, 200) 33 [ealt)"

where A is an absolute constant and 1/p+1/¢=1, p=2.
Our second theorem is
Theorem 2. Using the same notation as in Theorem DHI,

N
lex [
N

n=—

1) In [1], Theorem DH1 isttated for the trigonometrical polynomial on the
interval (0,1), that is, Sy= - cne?™inz, Further 20 in (—=, n) corresponds to

20/2x in (0, 1).

n=—
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R N »la
(4) 3} | Sal@) PSAQ+YN+x/0) 35 [ealr)
for any ¢>0 and sufficiently small 5, where 1/p+1/¢g=1, p=2 and

i 2 {S" |sinwv | ’—‘/ S"” sin*v ; \?
4 71."’((1—]-1)"‘1\ 0 7 ﬁdv) ( 0 2 d’l)) :

Taking p=38, 4, and 5, we get

(5) ZZ; | Sy(x,) [*<0.053(1 +&)(N+ n/a)(”gv e 'm),’
(6) ?‘; | Sx(z,) [*=0.076(1+)(N+ ﬂ/&)(ﬁéﬂ e, |4/a)x,
(7) fz‘:}l | Sx(x,) P=0.1431 + ) (N+ n/a)(”ilw | ea '5/4)4.

Our theorems have the application similar to [1]. For example,

we have
N

Theorem 3. If Sy(z)= > c, e, then

na=—N

Q3 z=: | Sy(a/q) P=2.4N+QY) n;”_yw, ® for all Q=Q.
(a,gq)=1

Our method of proof of Theorem 1 and 2 is different from [1]
and is adopted from our paper [4]. In §2, we prove a formula for
Sy(x) which is used later. In §3 we prove Theorem 1 and in §4
Theorem 2 is proved.

§ 2. General formula. Let f(t) be an integrable function having
Si(x) as the Nth partial sum of its Fourier series, then

Sa@)=—|" AODMa—tat=2{" SuODya—t)at
where D,(t) is the Nth Dirichlet kernel, i.e.
I _ sin(N+1/2)t
8 Dy(t)=— kt="—2"—" 127,
(8) x(2) 2 +k2=1 co8 2sin t/2

Let (2,) be a sequence of real numbers which are determined later,
then we have the inequality (cf. [4])

i 2.D,(t)= ”g Zn(DN(t) + FZ’;H cos 'n,t)

n=N
M

M M
=3 LDyt)+ ) (2 2,.) cos mt.
n=N m=N+1\n=m

If we put 4,= 2"} 1., then we get
m=1

x
’g AuDp () = Ay — Ay_)Dy(t)+ M=EN+1 (Ay— A,;) cos mt
and then

(9) Dyit)=— L S aDt)—— L SV (Uy—4,_,) cosnt

'AH_AN—I n=N AI—AN—I n=N+1

=Dy, (t)—Dy,(t), say.
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We have, by (8),
DN-l(t)z

1 1
1 1/2)t

b (B
. Zne‘(“-l'llz)t .
—dAy_, 2sint/2 d 1§v

We write pu= [%(M +N ):I and y= [%(M —N )] —1 and we suppose

that 2,,,=2._, for 0<n=y and the other 2, vanishes, then

1 1
D t — i(pe+1/2)t X snt)
w4, Zsin t/2j(e Z,
_ 1 sin (1+1/2)t )
10 - At+2 S 4,,. coS it
(10) Ay—Ady.  2sint)2 ( 23 dura o8
1

= D,.(t)(l“+2 >V Autn COS nt).
Ay — Ay, n=1

Let g be the characteristic function of the interval (—4,4d) with
period 27 and we take (1,) such that 2,+2 2_‘,12,&,. cos nt is the vth
Cesaro mean of the Fourier series of g, that is,

Aut2 gl Au+n COS ML =-71r—§;g(u)K,(t —u)du

=l§5 K,(t-u)du:lg'”lf,(u)du
T J-8 T Jis

1)

where K, (u) is the vth Fejér kernel and is defined by

I _1l &K 7
. K w)=—1 3 Du(w) "E+§1(l e ) cos nu
__sin® (+1)u/2
(v+1)2 sin® u/2
and then
8
A+2 5_,‘ Autn COS 'nt-—l—{5 + ”2_1 1- v_+_1)§—s cos n(t—u)du}
_1 n \sinnd
B+2 z‘, ( m)—n—— cos nt}.
Therefore,
_ 0 _1/(y m \\sinno .
F“?: Z'H—”_ﬂ'(l l)+1) n (n—ly 2’ ,)J)
and

v ] 8
19 A==t 2 3 A= 1| Kwdu=2{ K.

Now, by (10) and (11)
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Sy, 1(x>——§ F&)Dy (w—t)dt

L rope—oa] " K

T T (A Ayr) )<

” s
=) SO 0di] K
= ﬂz—u%l—*) S:_s us_tf(t)D,k(x —t) K, (u—t)dt.

Further, by (9)
Sva@)=—|" AODy@—t)dt

1 z
T (e —Ay) "_EN (du— ,._I)S_xf(t) cos n(x—t)dt.

If f(t) is replaced by S,(t), then S,,(¢) vanishes and then (14)
becomes

Sy(x)= ‘7];_—5,( Sy(t)Dy,(x—t)dt

—T

= 1 d S Sy(®)Du(x—t) K, (u—t)dt
= iy ] SvOD DK by
We can also verify this formula directly.
§3. Proof of Theorem 1. We can suppose that S,(x) is real.

By (15), we have

S,3(x) = ” duS N(t)D,L(x—t)K,(u—t)dt}z

iy U

smgz_sdus S,3(t) K2 — t)dtS:i:duS;Dﬁ(x —8)dt

20 \ . v
ms_}’ (t>dt§ d“S_”SN(t)K,(u t)dt
and then

2 2 20 2 Qo 2Upy
5 SN(x,)_-mS_ID (t)dts duS_xSN(t)Ky(u t)dt

(16) !
=A—S Sxt)ydt=A 2 e,
2

n=—N
where

40 S
— = |\ KXt)dt\ D3t)dt.
= e AN_1>=S wdt\” D)
Since

1 y 1 1

;5 K’(t)dt——+2 (1——+T>2‘ 376 30r1)

and
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1 S" 1
=\ DXt)dt=p+—=—
I u(t)dt = e+ 2
by the Parseval identity and (8) and (12), we get
45(p+1/2) 1
17 A=A0T8) =
an i e
If we take y=[a/d] and suppose that 0 is sufficiently small, then,
by (13),

tu= =" K@du=_ 2 [T,

n(v+1) 2 sin®* u/2
~ 4 S“”sm v+ 1)u/2 S“/’ sin® v dv
T w(v+1) u? T v )

By (17), we have

e (e
Tl 2

If we put a=7 or &«=7x/2 in (18), then
A=<234(N+7/d) or A=3.13(N+m/20),
respectively. This proves (2).
§84. Proof of Theorem 2. By (16) and the Holder inequality,
we have

18,0 s ([ 1840 Rz az).

-(Sz_sdug | Dz —1) |«dt)”",
where 1/p+1/q 1, and p=2, and then

(20 ,
o A ICNERT WS—K (t)dt

(] 1Duoy pat) (" 15wy rat
By the Hausdorff-Young theorem,

_]:— z » llpsl _ 1lq: 1 ptle
(20) (27r S_RK,(t)dt) < (1+2 (-2 1)) = T

and
(21) (A isa pae) "< 5 eale) ™

Further, we have
S | D(t) |*dt = 5 sin (£+1/2)t | 4.
27 Jo

sin? ¢/2
< 1 {( N >"S" | sin (pe+1/2)t lth_‘_nqs | sin (;1+1/2)t qut}
27 Wsiny t?
< (#+1/2)q—-1 {( 7 qu(#HI!)I sint |q St(#+1/2) | sint lq dt}
211 sin 9 t? n(pt1/)
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This holds for any »>0. If we take 7 as a fixed small number and
make ¢ so large enough, then we get

* 1+e ,,.4(|sint|
22 S Du(t) [idt = « ls ' dt
(22) DU e S | DAY
for any fixed 6 and all sufficiently large p. Substituting (20), (21),
and (22) into (19), we get

pRNERTE

< (1 +€")(20v)/ep |sint | dt rlaf N .
T 2m g+ 1) UMy — Ay ) <S ¢ ) (E o |>
If we take v=[x/d], then (23) becomes

< »< 271+ NN+ /0) 41
@) 318 psT LMD 4§ e ie)

(23)

n=—N

where
w_({"|sinwv]|? ”“‘/ S‘/’ sin® v »
A —(Sonv) ( D o d'v) .
Thus we get (4).
By the numerical calculation, we get”
_27A"  <0.0528 for p=3.
(g1
=0.07576 for p=4,
=0.143 for p=5.
Thus we get (5), (6), and (7).
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