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1. Introduction. The main purpose of this paper is to give
the affirmative answer to an open problem raised by A. Arhangel’skii
in his recent communication to K. Morita whether the image Y
under a perfect mapping f of a paracompact normal M-space X is
an M-space or not." A closed continuous mapping f of a topological
space X onto a topological space Y is said to be perfect if the inverse
images under f of points y of Y are compact subspaces of X. We
shall prove the following main theorem.

Theorem 1.1. Let f be a closed continuous mapping of an
M-space X onto a normal space Y, where X is T1. If f-l(y) is
countably compact for any point y of Y, then Y is also an M-space.

As a direct consequence of Theorem 1.1 we obtain the following
Cororally 1.2. Let f be a closed continuous mapping of a

normal M-space X onto a topological space Y, where X is TI. If
f-(y) is countably compact .for any point y of Y, then Y is also
a normal M-space.

Some applications and a generalization of our main theorem will
be mentioned in .4.

2. Lemmas. Lemma 2.1. Let T be a metric space. If {}
is a sequeuce of locally finite closed coverings of T such that {}
satisfies the condition (.) and that +1 is a refinement of for
every n, then there exists a sequence (1I n- 1, 2, ...; m-- 1, 2, ...}
of locally finite open coverings of T such that

1 {1I} satisfies the condition (.),
(2) FcU for ed; n=l, 2, ..., re=l, 2, ...,

where ={F ]2 e d} and 1I U 12 e d}.
Proof. For any F. of ., let us put

where d is a metric function in T and m is an arbitrary positive
integer. Clearly FcV. Let us put further

Then we can prove that {} satisfies the condition (.). Indeed,
let --{Kli-= 1, 2,...} be a family of subsets of T which has the
finite intersection property and contains as a member a subset of

1) Prof. K. Morita has kindly informed me of this open problem.
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St(x0,) for every n, m and for some fixed point x0 of T. We
can assume without loss of generality that K+K for every i.
Let K(,) St (x0, ) for any n, m, and let us put

e(Xo)- d(xo, J ){F[ x0 e F, F e
for each n. Then clearly e(Xo) > 0. Further, if 1/me(Xo), then
St (Xo, )-S(St (Xo, ); l/m), and hence

S(K(, ); l/m)? St (x0, )=/:0,
where S(A; e)-{xld(x, A)<e} for any subset A of T and for any
e>0. Consequently for each n we can find a positive integer m
and a point x of T such that (1) 1/m< e(Xo), n<m, (2) i(n, m)> n,
and (3) x e S(K(,); 1/m) St (x0, ). If we put A-{x n=>k},
then by the condition (.) for {} we have

{A k-l, 2,. .}=/:.
Let toe {Alk-1, 2,...}. Then it can be proved that

toe {KIi-l, 2,...}.
If otherwise, then there exists some >0 and some positive integer
io such that

S(t0; e) g K- for any j >__ i0.
Let n be a positive integer such that 3/e < n, i0< n and d(to, x)
Then there exists a point y of K(,)such that

Since d(t0, y) < 2e/3 < e, we have

This is a contradiction, because i(n, m,) n> io. Thus {.} satisfies
the condition (.).

Finally for each n we can find a locally finite open covering
-{W] e z/} of T such that FW for any e 4. This is
possible in case Y is strongly normal, i.e., collectionwise normal and
countably paracompact (cf. M. Kattov [2). Let us put U
V W, II-{U 2 e A}. Then each 1I is a locally finite

open covering of T, and {1I} satisfies the conditions (1) and (2).
Thus we complete the proof.

Lemma 2.2. Let Y be a topological space in which there
exists a sequence {} of (not necessarily open or closed) coverings

of Y satisfying the condition (.), and f a closed continuous mapping

of a topological space X onto Y. If f-(y) is countably compact
for any point y of Y, then {1I} satisfies also the condition (.),
where lI-f-().

Since this lemma can be proved similarly as [1, Theorem 2.4,
we omit the proof.

3. Proof of Theorem 1.1. Let {1I} be a normal sequence of
open coverings of X which satisfies the condition (.). Then there
exists a normal sequence {} of locally finite open coverings of X
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such that 3 is a refinement of 1I, where 3--- Il V e }. For
brevity we put - for every n. Then is a locally finite
closed covering of X and + is a refinement of for each n.
Furthermore it is clear that {} satisfies the condition (.). Let us
put -{F 12 e A}, L-f(F), -{L 12 e A}. Then + is a
refinement of . for every n, and by the proof of [1, Theorem 2.3
{E.} is a sequence of locally finite closed coverings of Y which satisfies
the condition (.). If we put M-f-(L), !gt.-{M]2 e A}, then
!gt.+ is a refinement of .Igt. for every n, and by the proof of [1,
Theorem 2.4 {..} is a sequence of locally finite closed coverings of
X which satisfies the condition (.). We note that F.M..

Now, since X is an M-space, there exists a closed continuous
mapping g of X onto a metrizable space T such that g-(t) is countably
compact for any point t of T (cf. [4, Theorem 6.1). Let us put
S-g(M), (R)-{S ]2 e A}. Then (R)+ is a refinement of (R) for
every n, and by the proof of [1, Theorem 2.3 {(R)} is a sequence of
locally finite closed coverings of T which satisfies the condition (.).
Hence by Lemma 2.1 there exists a sequence {(C).} of locally finite
open coverings of T such that

(1) {(C).} satisfies the condition (.),
2

where (C).-{0. 12 e A.}. If we put further W.-g-(O.),
={W. 2 e A.}, then M.W. for each n, m, and 2, and by the
proof of [1,T heorem 2.4 {.} is a sequence of locally finite open
coverings of X which satisfies the condition (.). Let us put

G.- Y-f(X- W.).
Since f is a elosed mapping of X onto Y, each G is open in Y,
and LG, Mf )W. Finally let us put

for each n, m. Then each (R). is a locally finite open covering of
Y. This follows from 1, Lemma 2.1, because {f-G(.) t2 e A.} is
locally finite in X. Furthermore it can be proved that {(R).} satisfies
the condition (.). In fact, let be a family consisting of a countable
number of subsets of Y which has the finite intersection property
and contains as a member a subset of St (y0, (R).) for every n, m, and
for some point y0 of Y. If we put *-{f-(K)]Ke }, then * is a
family consisting of a countable number of subsets of X which has
the finite intersection property, and further contains as a member a
subset of St (0, 3.) for every n, m, where 0 is an arbitrary point
of f-(yo). Consequently we have {f-(K) K e $} :/: , which implies
that {KI Ke}=/:. Thus {(R).} satisfies the condition (.). By a
suitable ordering of {(R).} we ean put {(R).}- {(R), n- 1, 2, ...}.
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Since Y is a normal space, any locally finite open covering of
Y is normal (cf. A. H. Stone 7_). Hence there exists a normal
sequence {(C)} of open coverings of Y such that (C) is a refinement
of ( for each n. It is obvious that {} satisfies the condition (.).
Thus we complete the proof.

4. Applications and a generalization of the main theorem.
Theorem 4.1. Let Y be the image under a closed continuous

mapping f of a normal M-space X, where X is T. Then the
following satements are equivalent.

(1) Y is an M-space.
(2) Y is a q-space in the sense of E. Michael 3.
(3) The boundary f-(y) of the inverse image f-(y) is

countably compact for every point y of Y.
Proof. The implication (1)-(2) is trivial, and (2)-(3) was proved

by E. Michael _3. Hence it is sufficient to prove only (3)-(1). For
each point y of Y, we shall define an open subset L(y) of X as follows:

(Int f-(y), if f-(y):/:,
L(y)-

(f-(Y)-P, if f-(y)=,
Where p is an arbitrary point of f-(y) (cf. [5). Let us put

L- {L(y) y e Y}, F=X-L.
Then F is a closed subset of X. Since any closed subspace of an
M-space is also an M-space, F is an M-space as a subspace of X.
If we denote by j the restriction of f on F, then the mapping

f F--Y is closed, continuous and j-(y) is countably compact for
any point y of Y. Hence by Theorem 1.1, Yis an M-space. Thus
we complete the proof.

Theorem 4.2. (K. Morita and S. Hanai [5, Theorem 1). Let
f be a closed continuous mapping of a metric space X onto a
topological space Y. In order that Y be metrizable it is necessary
and sufficient that the boundary ?Sf-(y) of the inverse image f-(y)
be compact for every point y of Y.

Proof. If Y is metrizable, then it is an M-space. Hence by
Theorem 4.1, the boundary f-(y) is compact for every point y of
Y. To prove sufficiency, it suffices to consider the case when f is
perfect, i.e., f-(y) is compact for every point y of Y. As is well
known, the image under a closed continuous mapping of a paracompact
Hausdorff space is also a paracompact Hausdorff space. Hence by
Theorem 1.1, Y is a paracompact Hausdorff M-space. Since the
product mapping ff: XX--Y Y is perfect, the product space
Y Y is perfectly normal as the image under a closed continuous
mapping ff of a perfectly normal space XX. Therefore by a
metrization theorem of Okuyama _6, Y is metrizable. Thus we
complete the proof.
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Now let m be an infinite cardinal. We shall say that a
topological space X is an M(m)-space if there exists a normal sequence
{1I} of open coverings of X satisfying the condition below:

If a family consisting of at most m subsets of X has the

(**)
finite intersection property and contains as a member a subset
of St (x0, 1I) for every i and for some fixed point x0 of X, then
{g Ke }=/:.

In case m= 0, M(0)-spaces are M-spaces.
As for M(m)-spaces, we can prove analogously the following

theorems.
Theorem 4.3. A topological space X is an M(m)-space if

and only if there exists a closed continuous mapping f of X onto a
metrizable space T such that f-l(t) is m-compact for each point t
ofT.

Theorem 4.4. Let f be a closed continuous mapping of an
M(m)-space X onto a normal space Y, where X is TI. If f-(y) is
m-compact for any point y of Y, then Y is also an M(m)-space.

Corollary 4.5. Let f be a closed continuous mapping of a
normal M(m)-space X onto a topological space Y, where X is T1.
If f-(y) is m-compact for any point y of Y, then Y is also a normal
M(m)-space.
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