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1. Introduction. The main purpose of this paper is to give
the affirmative answer to an open problem raised by A. Arhangel’skii
in his recent communication to K. Morita whether the image Y
under a perfect mapping f of a paracompact normal M-space X is
an M-space or not.” A closed continuous mapping f of a topological
space X onto a topological space Y is said to be perfect if the inverse
images under f of points y of Y are compact subspaces of X. We
shall prove the following main theorem.

Theorem 1.1. Let f be a closed continuous mapping of an
M-space X onto a normal space Y, where X is T,. If f~(y) ts
countably compact for anmy point y of Y, then Y s also an M-space.

As a direct consequence of Theorem 1.1 we obtain the following

Cororally 1.2. Let f be a closed continuous mapping of a
normal M-space X onto a topological space Y, where X 1s T,. If
f(y) ts countably compact for any point y of Y, then Y is also
a normal M-space.

Some applications and a generalization of our main theorem will
be mentioned in §4.

2. Lemmas. Lemma 2.1. Let T be a metric space. ILf {F.}
1s a sequeuce of locally finite closed coverings of T such that {§.}
satisfies the condition (x) and that F,., is a refinement of F, for
every n, then there exists a sequence {U,, |n=1,2,---;m=1,2 ...}
of locally finite open coverings of T such that

(1) {U,,} satisfies the condition (x),

(2) F,,cU,. for 2€4,; n=1,2, <., m=1,2, -+,
where F,={F,, | 2e4,} and N, ={U,n.| A€ 4,}.

Proof. For any F,, of ., let us put

Vi ={2 | d(z, F,)<1/m},
where d is a metric function in T and m is an arbitrary positive
integer. Clearly F,,CV,.,. Let us put further
Qgwm:{‘/nml ] i€ An}'
Then we can prove that {%,,} satisfies the condition (x). Indeed,
let & ={K;|1=1,2, ---} be a family of subsets of T which has the
finite intersection property and contains as a member a subset of

1) Prof. K. Morita has kindly informed me of this open problem.
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St (%, B,..) for every =, m and for some fixed point x, of T. We
can assume without loss of generality that K, ,c K, for every 1.
Let K;(u,m < St (x,, B,,.) for any n, m, and let us put

en(xo):d(‘vo’ u ){Fl &o € F! Fe %n}
for each n. Then clearly e, (x,)>0. Further, if 1/m<e,(x,), then
St (x,, B,.,.) = S(St (x,, F.); 1/m), and hence

S(Ki('n, m)s l/m) N St (xOJ %n)iﬁﬁy
where S(A4;e)={x|d(x, A)<e} for any subset A of T and for any
¢>0. Consequently for each % we can find a positive integer m,
and a point @, of T such that (1) 1/m, <e.(x,), n<m,, (2) i(n, m,)>n,
and (3) x, € S(Kiw,m,); 1/m,) N St (xy, Fu). If we put A,={x, | n=k},
then by the condition (x) for {%.} we have
{4, [ k=1,2, -+ }=g.
Let t,e N{A,|k=1,2, ---}. Then it can be proved that
the N{K;|1=1,2, +-+}.

If otherwise, then there exists some ¢>0 and some positive integer
1, such that

Sty )N K;=¢ for any 7j=1,.
Let » be a positive integer such that 3/e<m, i,<n and d(t,, «,)<<¢/3.
Then there exists a point y, of K., .. such that

ATy Yn) <1/m, <1/m<e/3.
Since d(t,, ¥.)<2¢/3<e, we have
S(tm 8) N Ki(n»m")i¢'

This is a contradiction, because i(n, m,)>n>1, Thus {$G,,} satisfies
the condition (x).

Finally for each n we can find a locally finite open covering
W, ={W,,|2e4,} of T such that F,,cW,, for any 1€ 4,. This is
possible in case Y is strongly normal, i.e., collectionwise normal and
countably paracompact (cf. M. Katétov [2]). Let us put U,.:
=V D Wor, Wro={Upm1| 1€ 4,}. Then each 1,, is a locally finite
open covering of T, and {1,,} satisfies the conditions (1) and (2).
Thus we complete the proof.

Lemma 2.2. Let Y be a topological space in which there
exists a sequence {B,} of (not necessarily open or closed) coverings
of Y satisfying the condition (x), and f a closed continuous mapping
of a topological space X onto Y. If f~(y) is countably compact
for any point y of Y, then {1} satisfies also the condition (x),
where N, =f"(F,).

Since this lemma can be proved similarly as [1, Theorem 2.4],
we omit the proof.

3. Proof of Theorem 1.1. Let {ll,} be a normal sequence of
open coverings of X which satisfies the condition (x). Then there
exists a normal sequence {8,} of locally finite open coverings of X
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such that B, is a refinement of U,, where 8,={V|Ve®B,). For
brevity we put §,=%, for every n. Then &, is a locally finite
closed covering of X and {¥,., is a refinement of &, for each n.
Furthermore it is clear that {{,} satisfies the condition (x). Let us
put %nZ{Fnl | 2 eAn}y LnZ:f(Fnl)? 8n:{LnZ | A eAn}° Then 8n+1 is a
refinement of ¥, for every =, and by the proof of [1, Theorem 2.3]
{&.} is a sequence of locally finite closed coverings of Y which satisfies
the condition (). If we put M,,=f"'(L,), WM,={M,;| 1€ 4,}, then
M, is a refinement of I, for every =, and by the proof of [1,
Theorem 2.47 {IR,} is a sequence of locally finite closed coverings of
X which satisfies the condition (x). We note that F,,CM,,.

Now, since X is an M-space, there exists a closed continuous
mapping g of X onto a metrizable space T such that ¢—'(¢) is countably
compact for any point ¢ of T (cf. [4, Theorem 6.17). Let us put
S..=9(M,,), &,={S,.|2€4,}. Then &,,, is a refinement of &, for
every m, and by the proof of [1, Theorem 2.37 {&,} is a sequence of
locally finite closed coverings of T which satisfies the condition ().
Hence by Lemma 2.1 there exists a sequence {O,,} of locally finite
open coverings of T such that

(1) {9O,.} satisfies the condition (x),

(2) S.CO0umy
where O,,,={0,..|1€4,}. If we put further W,,..=0"(0un);, Wy
={W,ml|ie4,}, then M,,CcW,,, for each n, m, and 2, and by the
proof of [1,T heorem 2.47 {L8,,} is a sequence of locally finite open
coverings of X which satisfies the condition (x). Let us put

Gnmz = Y"f(X" anx)-
Since f is a closed mapping of X onto Y, each G,,, is open in Y,
and L,,CG,m1y, M T (Gumr) S Womie Finally let us put
®nm:{Gnml | A€ An}

for each m, m. Then each @,, is a locally finite open covering of
Y. This follows from [1, Lemma 2.17, because {f~G,..)|2€ 4,} is
locally finite in X. Furthermore it can be proved that {®,,} satisfies
the condition (x). In fact, let & be a family consisting of a countable
number of subsets of Y which has the finite intersection property
and contains as a member a subset of St (y,, ®,,) for every n, m, and
for some point y, of Y. If we put &*={f(K)| K e &}, then R* is a
family consisting of a countable number of subsets of X which has
the finite intersection property, and further contains as a member a
subset of St (x,, ,,) for every =, m, where x, is an arbitrary point
of f~'(y,). Consequently we have N{f~(K)| K € & #¢, which implies
that N{K|KeR}+#¢. Thus {@,,} satisfies the condition (x). By a
suitable ordering of {®,,} we can put {®,,}={®,|»=1,2, -..}.
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Since Y is a normal space, any locally finite open covering of
Y is normal (cf. A. H. Stone [7]). Hence there exists a normal
sequence {9,} of open coverings of Y such that 9, is a refinement
of @, for each n. It is obvious that {9,} satisfies the condition (x).
Thus we complete the proof.

4. Applications and a generalization of the main theorem.

Theorem 4.1. Let Y be the tmage under a closed continuous
mapping f of a normal M-space X, where X is T,. Then the
following statements are equivalent.

(1) Y 4is an M-space.

(2) Y ts a g-space in the sense of E. Michael [3].

(3) The boundary Bf'(y) of the inverse image [f~'(y) is
countably compact for every point y of Y.

Proof. The implication (1)—(2) is trivial, and (2)—(3) was proved
by E. Michael [38]. Hence it is sufficient to prove only (3)—(1). For
each point y of Y, we shall define an open subset L(y) of X as follows:

Int f~'(y), it Bf(y)#9,

L(y)={ " : AN

f (y)—pya if éBf (y)—¢y

Where p, is an arbitrary point of f~'(y) (ef.[5]). Let us put
L=U{L(y)|ye Y}, F=X-L.

Then F is a closed subset of X. Since any closed subspace of an
M-space is also an M-space, F' is an M-space as a subspace of X,
If we denote by f the restriction of f on F, then the mapping
7 F—Y is closed, continuous and f~'(y) is countably compact for
any point y of Y. Hence by Theorem 1.1, Y is an M-space. Thus
we complete the proof.

Theorem 4.2. (K. Morita and S. Hanai [5, Theorem 1]). Let
f be a closed continuwous mapping of a metric space X onto a
topological space Y. In order that Y be metrizable it is necessary
and sufficient that the boundary Bf'(y) of the inverse image f~(y)
be compact for every point y of Y.

Proof. If Y is metrizable, then it is an M-space. Hence by
Theorem 4.1, the boundary Bf~'(y) is compact for every point y of
Y. To prove sufficiency, it suffices to consider the case when f is
perfect, i.e., f~'(y) is compact for every point y of Y. As is well
known, the image under a closed continuous mapping of a paracompact
Hausdorff space is also a paracompact Hausdorff space. Hence by
Theorem 1.1, Y is a paracompact Hausdorff M-space. Since the
product mapping fx f: Xx X—Y x Y is perfect, the product space
YxY is perfectly normal as the image under a closed continuous
mapping fXf of a perfectly normal space X x X. Therefore by a
metrization theorem of Okuyama [6], Y is metrizable. Thus we
complete the proof.
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Now let m be an infinite cardinal. We shall say that a
topological space X is an M(m)-space if there exists a normal sequence
{1} of open coverings of X satisfying the condition below:

If a family & consisting of at most m subsets of X has the
finite intersection property and contains as a member a subset
of St (x,, U,) for every ¢ and for some fixed point x, of X, then
N{K | K € R} #¢.

In case m=¥,, M(W,)-spaces are M-spaces.

As for M(m)-spaces, we can prove analogously the following
theorems.

Theorem 4.3. A topological space X is an M(m)-space if
and only if there exists a closed continuous mapping f of X onto a
metrizable space T such that f~(t) is m-compact for each point t
of T.

Theorem 4.4. Let f be a closed continuous mapping of an
M(m)-space X onto a normal space Y, where X is T,. If f~(y) is
m-compact for any point y of Y, then Y s also an M(m)-space.

Corollary 4.5. Let f be a closed continuous mapping of a
normal M(m)-space X onto a topological space Y, where X 1s T..
If f~(y) is m-compact for any point y of Y, then Y is also a normal
M(m)-space.
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