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153. On the Principle of Limiting Amplitude

By Nobuhisa IWASAKI
(Comm. by Kinjir6 KuIIGI, M.J.A., Oct. 12, 1967)

1. Introduction and Theorem. We study the behavior for
large time of solutions of wave equations with a harmonic forcing
term in the three dimensional euclidian space. That is called the
principle of limiting amplitude. This principle states that every
solution u(t) for the initial value problem,

c(x)}u(x, t)-f(x)e(i.i) b(x) t +

(1.2) u(x, t) -3-u(x, t)
t=0
0

t=0 ax
tends to the steady state solution, e’v(x, iw), uniformly on bounded
sets at t--oo. There v(x, iw) satisfies the elliptic equation.
(1.3) {-+c(x)+ioob(x)-w}V(x, iw)=f(x),
and the Sommerfeld radiation conditions at infinity. In the case
when b(x)=-O and the real valued function c(x) is once continuously
differentiable and its support is compact, this principle has been
proved by D. A. Ladyzenskaja 1. Here the rate of approach to
steady state is like e-*t, ]>a, as t-oo. When b(x) and c(x) satisfy

that b(x)>_O, b(x)-1 c(x)-1 as x I--c and others, S
Ix

Mizohata and K. Mochizuki 2 has shown the principle, but they
did not give the rate of approach. In this paper, we shall obtain
the rate under the assumption that the real-valued function b(x)>_0,
c(x)>_O are bounded and their supports are compact.

Theorem. Let f(x) b(x), and c(x) be funtions which satisfy the
following conditions.

i) f(x), b(x), and c(x) vanish outside a bounded set
ii) Df L(E)

iii) b(z)>__O, c(z)>O,
And let u(x, t) be a solution for initial value problem (1.1), (1.2).

Then there exists a steady sate e-tV(x), such that
(1.4) max

and V is a solution (1.3) satisfying the Sommerfeld radiation
conditions at infinity. Here K is a bounded set of E. We can
regard a solution u(x, t) as a twice continuously differentiable func-
tion u(t) from [0, oo) to L(E) and as a continuous function to e(E).
In this sense there exists the unique solution of (1.1), (1.2) if
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(1.5)

then

f(x) e e.(E).
Let () be the Laplace image of u($) with respect to $

(ie) g()- e-u(t)dt in L

and
v(1) td L1 lim .e in(1.6) u(t)- 2-- -for large enough a> 0.

Where { + c(x) + Ib(x) + 2}v(I) f(x), v(1) e L. Re > 0. There-
fore we study the analyticity of v(1) with respect to and the order
I v()I1, as lm I.

2. Some Lemmas. 1) In the case when b(x) c() O.
{-- +}v(x, ) f(x), f(x) e L

has the unique solution v(x, ) in e at Re >0 and v(x, )is an an-
alytic function of to L.

V(x, )R(x)f is represented by a fundamental solution E(1) as
following

p{ 1 }_eR(2)f= N(2)* where N(2)-
4] [+2 4[ ]"

Let (8) denoge a Hilberg space eonsisting of all fuetions f such
that e*ttfeL(N) with the inner produe (f, g),=(et"tf,
(-<8< +). Now it is clear that (8)Q(8’) if 8>8’.

Using these spaees

Lemma 1. Let, R(2)f= _p(f(p)dV.
Then R(i), which values a bounded operator from Q(2)to

Q(-2), is an analytic function of and satisfies the following
estimates at Re- (>0).

i) R(1)f]_E C/(1+] 1)(1+IRe [).
ii) ]DR(1)f]_gC/(I+I Rel
iii) DR(1)fI_E C(l + ])/(l + Re l) f]
iv) {R(1)-R(I + h)}fl_,EC h [/(1+] I)(1 +IRe ). fl,

0<h<l where ]] denote the norm of Q()()IfI-] ef]2dx.
2) In the case when b(x) 0, c(x) O.
Lemma 2. Let L(1)u {- J+2+ c(x)}u, u e and G(1) be the

green operators of L(1)
(ie) G(1). L(1) L(1). G(1) I; L2L

then we can consider G(1) as bounded operators from Q() to Q(-).
In this sense we can analytically continue G(1) to analytic function
of at Re-’<0, which satisfies the following estimates.
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i) G(2)fl-_ c fl
(i+12 I)(i+lRe 2 I)

ii) I{G(2)-G(2+h)}f]_<_clhl/(l+12l)(l+lRe2)l.lfl6
and GI(2) are compact operators from Q(6) to Q(-) (which mapp
any bounded set to a precompact set) where c(x)O is a bounded
function with compact support.

3) In the case when b(x) 0
Lemma 3. Let L.()u {- +2+ c(x) + b(x)}u, u e e. and G()

be the green operators of L().
(ie) G.(). L() L(). G() I: LL-L

then we can also consider G() as bounded operators from Q() to
Q(-). In this sense we can continue G(2) to an analytic function
of at Re>_-"0, which satisfies the following estimate

G4;)fl_<_ c

(l+l 2 I)(l+lRe2 I)
where b(x) >__0 and c(x) >__0 is bounded functions with compact supports.
(Proof of Lemma 1).

Since D, (c-functions with compact support) is a dense subset
of Q($), we may assume that fe D in order to prove the eitimates.
It is clear that R() is an analytic function of at Re >_-$, which
values the vector space consisting bounded operators from Q(2) to
Q(-2). We show only the case -a+ib, a I<_, b>__N>O.

At Re 2>0,

F 1 .F(f)lR(2)f=F (2=1 I)+

(,,.) r(,,)4(++)+
f()d

where Fand F are Fourier and Fourier inverse transform, respectively.
i, j, and k take a sign + or -, and

(+ + +)- o, ) x Eo, ) x Eo, )
(+ +-)=[o, )x [o, )x(-, o

Let R(ijk)(2)f=
r(, 4(+ +)+2

f()g"

Sinee we can consider tha is of three dimension eomplex number
saee: C, we may change the integral aths F(ij) as fllows,
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J

then

R(ijk)()f--
(+)(,+)(+) 47(+ +)+

f()d.

The right side of the above equation is analytic at Re2>- and
Im 2N>0, therefore

R(2)f= e2’
(..) <++)(++)(++) 4(+ +)+

f()d

at Re2>-6, Im2N>0.
Thus we have only to prove that every term of the right side

of the above satisfies the estimates of Lemma 1. In this place we
estimate only a term which is

S(J+ J+, J+)(2)f ]()d
+++ 4 (+ +)+

p(s, s, s)
where

g(ss, s)-- s/ i -- s. / i - sz-2’ 2’

p(sss, )-4{(s+i)+(s+i)+(s+i)}+.
Considering as Fourier transform from (s,s.s) to (x,x,x),
apply the Plancherel’s theorem to e<++)S(J+J+J+)(2)f.

.1
e(++)S(J+J+J+)(2)f dx

c ]g(s.s,s) ]dsdsdsg
inf p(sss2) .

we

-- inf p(sss2)
e-(++’)f(x) Idx

0_____ 8, 8, 8< oo

and
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i inf (t+i)+inf P(s, s, s, 2):>-0<
0_s, s, s oo

>_c(1+ 2 )(+ Re 2)
therefore

e-( +’S(J+, J+, J+)(2) f [dx
c [e+f(x) dx. q.e.d

(1 +[ 2 [)(+ Re 2)
In order to prove Lemma 2, it is sufficient to solve the equa-

tion of operations,

that is, to show the existence of {I+ R(2). c(x)}- on Q(- ) Re 2 5’
0. This follows, when [Im2]is sufficiently large, from the ex-
istence of inverse by Newmann series using Lemma 1. i), and, when
[Im 2 is finite, from the fact that the self-adjoint operator L(0) has
no discreat eigen value and R(2).c(x) is a compact operator on Q(-).

In order to prove Lemma 3 we also solve the equation
b(x).

that is equivalent to showing the existence of inverse of {I+ T} on
L, where

T-2.a(x).G(2).a(x), a(x)b(x),
and G(2) is given by {-2G(2)a(x)(I+ T)-+ I}G(2). By the same
method of S. Mizohata, K. Mochizuki [2,

]v[[z[[{I+T}v] at Re20
because

(+a+ b)a d(E,a(x)v, a(x)v)> 0 q.e.d.Re (Tv, v)
(+ a-b)+ (2ab)

where E, is the resolution of the identity of the positive self-adjoint
operator L(0), and v[[+Re (Tv, v)-Re ({I+ T}v, v). Therefore
G(2) exists at Re 20 and satisfies the estimate of Lemma 3. Since
G(2) satisfies the estimate of Lemma 2, ii) we can extend the domain
of existence of G(2) to Re 2-"0 by Neumann series.

Proof of Theorem from (1.6)

(t)- 1 lim d2 in L, a>0, v()-G()f.

By Lemma 8, we can use the Cauehy integral formula.
We obtain that

 s>0.

Considering that IDyll L() we have the estimate tha
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max v() I__

Thus we conclude (1.4).

c Re 2>_.-e
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