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12. Note on the Nuclearity of Some Function Spaces. I

By Masatoshi NAKAMURA
(Comm. by Kinjird KuNuGI, M. J. A., Feb. 12, 1968)

The definition of nuclearity in a general locally convex space
was first given by A. Grothendieck [4]. The definition of nuclearity
given by M. Gelfand and N. Ya. Vilenkin [37] concides with that of
[4] in the case of countably normed spaces.

In this note, we consider the condition for nuclearity in
A. Pietsch [6], which is mainly derived from A. Grothendieck. By
using its condition, we shall show that K,{M,} space indroduced
first by I. M. Gelfand and G. E. Shilov [2] and extended by
T. Yamanaka [7] is nuclear.

1. Let E be a locally convex Hausdroff space over real or
complex fields and U is any absorbent and absolutely convex neighbor-
hood of the origin in E. Let

py(x)=inf {0>0; x € pU} for x e &
and E,=E/{x ¢ E; py(x)=0},
then topology of E, is introduced by the norm
|y ||=py(x) for wye Ey
where x, coresponds to € E in a natural way.

Let C(M) be the sets of all continuous real or complex valued
functions defined on M which is a compact Hausdroff space. Each
continuous linear from g on C(M) is called a Radon measure on M
and we frequently writes

wH=\ rap.

A “positive” Radon measure is a pe(C(M) such that p(f)=0
whenever f(x)=0 for all xe M.
Let E and F be normed spaces and their closed unit balls be
U and V respectively. A continuous linear mapping T of E in F
is called nuclear mapping if there exists continuous linear form
a,cE’" and y, e F such that the following holds:
Tx=%<w, a,y, for xeF

and >3 Pyo(@,) Py(y,) < + oo,

Definition. A locally convex Hausdroff space E be called
nuclear space when there eixsts a base U(E) of absolutely convex,
absorbent 0-neighborhood such that the following equivalent condi-
tions holds:

i) for any Ue U(E) there exists a Ve U(E) being absorbed
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by U such that the canonical mapping from E, on E, is nuclear.

ii) for any Ue U(E), there exists a Ve U(E) being absorbed
by U such that the canonical mapping from E}. in E}. is nuclear.
We need the following theorem due to A. Pietsch.

Theorem 1. A locally convex Hausdroff space E 1is mnuclear
if and only if there ewists a base U(E) of 0-neighborhood in E
such that the following holds:

(N) for any Ue U(E) there exists a Ve U(E) and a positive
Radon measure p defined on the weakly compact polar V° such that

pv(x)§SV0| {z,ay|dp for we K.
The proof is given in [6].
2. K,{M,} space and it’s nuclearity.
Let 2 be a open set in R*, x=(x,, %, ++-,&,),E=(&, &, -+, &,) be

. . . ki 1z
variable points in 2 and lx|=<2 x§> yD*=Df1««« Din, || =0+ ++ -
Jj=1

+a, where D;=0d/0x;,x=(;, +++,Q,), L*=0{ +++ x3», @=L means
>pB, for j=1,2,-- a_(% ... gn_> ak _(ak | ankn>
a;=2p8; for j=1,2,..+,n and 5 (bl’ )b (bl A
where a=(a,, ---,a,), b=(b, -+, b,), k=(k,, -+, k,) and we obey the
ru]_e 0.00:00-0:0’3?::_0_:0.
o 0

Definition. Let A be any directed index set, We assume
that M,(x, q¢)(p € A) is measurable on 2 with respect to  for each
multi-index ¢ and satisfies the following two conditions:

(i) M,(x,q)=0 for any p in A, and if p=<p’, then M,(x,q)
éM »’ (w9 q)

(i) for each pe A and multi-index ¢’, there exists a constant
C depending on p, ¢’, and »' such that the inequality

M,(z, 9)=CM, (2, 9+q") (1)
holds for all multi-index gq,
Next, we put
Il ¢ |l,=sup {M,(x, ¢) | D(x) | | » € 2, ¢; multi-index}, (2)

where ¢ is any infinitely differentiable function. Then denote by
K. {M,} sets of all infinitely differentiable functions ¢ which satisfies
lell,<+oo for all pe A, and topology of K,{M,} be defined by the
sequence of semi-norm || ¢ ||, (p € A).

Here, we make the following three assumptions on the K,{M,}:

(P) for any p in A there exists p’>p such that to any ¢>0 there
corresponds some N,>0 such that if |q|>N, then

My(x, q)=eM,(, q) (3)
(N,) for any p in A there exists p’=p such that
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() =sup 1 0 (4)

is integrable on 2.

(N,) let us denote by 2y, the sets of points (in 2) where the
M, (%, q) is not equal to zero and o« for some ¢ and assume that
for each pec A there exists v,>0 such that {¢||é—a|=v,}c2 for
all €@, , then

(1) for any pe A there exists p'=p and K,,. >0 such that for
each xe 2, if |y—«|<7v, and |¢'|=n then

M,(2, )=K,, M, (y,q+q") (5)

or

(2) M,y(x, q)(pec A) are monotone increasing in 2 with respect
to ®=0 and monotone decreasing in 2 with respect to x<0.

Lemma 1. If for any p in A, there exist a mnon-negative

integer m,, p'=p and constant C=C,, such that the following
inequality holds:
lelb=C 33 | My, 0)| Do(e) | do< + ool e KulMLJ) (8)
"0
then K {M,} i a nuclear space.
Proof. Since the continuous linear forms 6! defined by

L@y 0D>=M, (&, q)D(§) for £eQ, 0<|q[=m, (7)
be contained in the polar of the 0-neighborhood
V={¢|oe Ko{Mj}, |l ¢, <1}, (8)

we can define a positive Radon measure ¢ on V° by the following
equality:

Svod?(a)d/x=Cos|Zl‘,s Sad?(&g)ds for @ e (V) (9)
therefore ||¢||pggyoq<¢, a>|dp for all pe Ky{My. (10)

Hence, by Theorem 1, K,{M,} is a nuclear space.

Lemma 2. For sufficiently small positive number ¢ and v
the following inequality holds:

o< 3 | 1D e b
or o@) =B, 33 |71 Do) d (12)
and o@) =B 3 | 1 Do) ae (12y

where ¢ € C=(Q), A,, B,, and B] are independent of ¢.

Proof. Let 7(t) (¢ real) be a continuous differentiable function
which equal 1 at t=0 and 0 for |t|=¢,, where ¢ is a fixed positive
number. Since
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—So(w) 7(61)§0(x1+51’ Loy * 0y xn)_'y(o)(P(w)
= S: li v(E—a)e(&r, oy + o+, @,) ]dE;

v 08,
21481 afy
= = d
L <agl¢+7agl) S

therefore we have
21+¢ +e
lgo(x)léBS ' llgo(éu Loy ** n)| d$1+CS o %SD(SU Loy ""xn) dsl'
LA 1

With ¢, ,, v(x,) replaced by &,>0, x,, v(«,), applying the same argu-
ment to

90(51, Loy * n), ago(sn Loy =y wn)

0¢,
and proceeding in this way step by step, we arrive at (12) and
similarly (12)’, where ¢=(¢, ¢,, ---,¢,), then (11) provided we take

&V n <v, where e,=mawx(e,, &, -+, &,).
Theorem 2. If the space K {M,} satisfies conditions (P), (N,),
and (N,), then it is a nuclear space.
Proof. For any pe A there exists p’=p such that m,,(x) is
integrable on 2. (by (,)). Hence if ¢e K, {M,} then
M (x, q) | D) | <My (€)M (%, ) | D(2) |
=m,,(x) sup M,(x,q) | D%(x)| for all xe Q.

By integration
sup | M,(@, 0) | Do(a) | do sl o[, (| mo(@)de) <400, (13)

Next, noting that if (P) holds then for all
lim sup M,(@, q) | D*p(x) |=0 (14)

lg|—+o0
we have the equality (for some positive integer n,)
[K% Ilp=sxqu {M,(2, @) | Dip(x) | |2 € 2, 0=[g|=m)(p € Ko{M,}. (15)

In the first place if we assume (,) (1), by (11) and (15), we have,
for ¢ e K,{M,} and rely,

M, 0)| Dow) | S A M @) 33 [ Do) |ds

<4, K, S M, 00) | Deld)
r la'Tsn Jie—alsr,
hence 0], <D, sup | M6 a+9) | Dowee) | de
. lolb=Dp 31 | Mo, ") | D"(@) | da< +00  (16)

Next, if we assume (V,) (2) and £=0, then, by (1), (12), and (15),
we have for pe K {M,},xe L,
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M=, 0) | D'o(a) |<B. 31 | "My, @) | Droele) | de

q¢’'|sn

=cB,, 51 [ "M 400 1 Do) g,

? ¢ Tsn
hence ” SD Hpécpp' osm,zls SaMp;(x’ q’/) ‘ Dq1/¢(x) | dm< + oo, (17)
o
In the case of <0, it is quite similar by using (12)’. Therefore,

by Lemma 1, K,{M,} is nuclear.
Remark. It will be found with its proof in [1] or [2] what
we stated without proof in 2,
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