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1. Statement of the main result. Throughout this paper we
assume that every ring has an identity element and an R-module
means a unital left R-module. Let B=Hom. (M, M) be an R-endo-
morphism ring of an R-module M as a right operator domain of M.
In this paper we shall be concerned with the following condition:

Condition (0). Me--M, e=e e B, implies e= l.
It is easy to see that if any isomorphism between two R-sub-

modules of M can be extended to an automorphism of M, then M
satisfies Condition (0). Our aim is to prove the following theorem.

Theorem 1. Let M be an injective R-module with Condition
(0). Then any isomorphism between two R-submodules of M can
be extended to an automorphism of M.

2. Left self.injective, regular rings with Condition (0). We
denote the injective envelope 1 of an R-module A by E(A). We
write N’N if N’ is an essential extension of N. If X is a subset
of a ring S, we define the left (resp. right) annihilator

l(X) {s e S sx= 0}
(resp. r(X), similarly). We shall list a series of lemmas.

Lemma 2. Let S be a left self-injective, regular ring. Then
every left annihilator ideal A is generated by an idempotent.

Proof. By the regularity of S, we have r(A)= J eS. Then
r(A)

A=l(r(A))=l( U eS)= l(eS)= S(1-e).
r(A) r(A) S(1--e)A

But, for each S(1-e)A,E(A)S(1-e)E(A)A and hence
E(A)=S(1-e)E(A)cS(1-e) by the injectivity of S(1-e)E(A).
Therefore A= E(A)= Sf for some f f2 e S.

Lemma 3. (]. von Neumann 7, Lemma 18). Let S be a
regular ring. Then a principal left ideal of S is a two-sided
ideal if and only if it is generated by a central idempotent.

Lemma 4. (B. Eckmann and A. Schopf 1, 4.3-). Let v: A--A’
be an R-isomorphism, then v can be extended to an R-isomorphism
of E(A) onto E(A’).

Lemma 5. For any two idempotents e, f of a regular ring S,
the following conditions are equivalent:

(1) eSfO.
2 Se’Sf’ for some 0 Se’c Se and Sf’ Sf.
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Proof. (1) implies (2). There exists a non zero map v: Se--Sf
since

Homs (Se, Sf)eSfO.
Since Im (v) is projective by the regularity of S,

Se--.Im (v)--.O
splits. From this, (2) follows immediately.

(2) implies (1). Let Se’Sf’ for some 0 :/: Se’ Se and Sf’ Sf.
We may assume that e’ is an idempotent by the regularity of S.
Then we have easily a non zero map SeSf’ since Se’ is a direct
summand of Se. Thus

eSfHoms (Se, Sf) O.
This completes the proof.

The following lemma is very interesting and useful.
Lemma 6. Let S be a let self-injective, regular ring and e, f

be idempotents with eSf=O. Then there exist central, orthogonal
idempotents e’, f’ such. that Sec Se’ and Sfc Sf’.

Proof. By Lemma 2 and Lemma 3, l(r(eS)) and r(l(Sf)) are
generated by central idempotents e’ and f’ respectively. And clearly
SecSe’ and SfSf’. eSf=O implies that e’ and f’ are orthogonal.

Proposition 7. Let S be a left self-injective, regular ring
with Condition (0) for the left regular module sS. Then any
isomorphism between two left ideals of S can be extended to an
automorphism of the left S-module S.

Proof. By Zorn’s lemma there is a maximal isomorphism v
between two left ideals X and Y which extends the given isomor-
phism. By the injectivity of S, the maximality of v and Lemma
4, there are idempotents e, f such that

X=S(1-e)Y=S(1-f)
and that Se and Sf do not contain any mutually isomorphic left
ideals. Then eSf=O by Lemma 5 and hence there are central,
orthogonal idempotents e’,f’ such that SenSe’ and SfSf’ by
Lemma 6.

e’f=e’(f’f)=(e’f’)f=O
implies S(1-f)Se’. Since S(1-e)S(1-f),

S(1- e) SgSe’ for some g g".
Now Se’ is an ideal, hence SgSe’. Since sS satisfies Condition (0).

S S(1 e’)(R) Se’S(1 e’)(R) Sg
implies Sg Se’. Furthermore

(1-e’)e=e-e’e=e-e=O
implies S(1- e) S(1- e’). Then

X= S(1- e) Se’(R) S(1- e’) S.
Hence X= Y-S, completing the proof.

Corollary 8. Let S be a left self-injective, regular ring with
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Condition (0) for zS and e, f be idempotents. Then SeSf if and
only if S(1-e)S(1-f).

:. Proof of Theorem 1. We denote by A the image of a
subset A of a ring S under the canonical mapping of S onto S/J(S),
where J(S) denotes the Jacobson radical of S.

Lemma 9. Let e, f be idempotents of B-Hom (M, M). Then
the following conditions are equivalent"

1 MeMf.
2 BeBf.

(3) BeBf.
Proof. The equivalence of (2) and (3) is found in (N. Jacobson

_5, III, 8, Proposition 1).
Now consider the following statements:
(1) Me,-Mf.
(1’) There exist R-homomorphisms

x: Me--Mf and y" Mf.---)Me
with exy e, fyx f.

(2’) There exist x’ and y’eB with x’-ex’f,y’-fy’e, and
x’y’ e y’x’ --.f.

2 ) BeBf.
Then (1), (1’), (2’), and (2) are equivalent since x and y in (1’)
induce x’ and y’ in (2’) respectively and conversely. This completes
the proof.

Lemma 10. Let M be an injective R-module. Then
(1) B is a left self-injective, regular ring.
(2) If M satisfies Condition (0), then so does B.
Proot. (1) is proved in (G. Renault [8, Thorme 2.1). If

M is injective, then idempotents of B can be lifted modulo J(B)
[2, Theorem 4.1. From this fact together with Lemma 9, (2)
follows.

Proo of Theorem 1. Let M be an injective R-module with
Condition (0). For any isomorphism between two R-submodules
X, Y of M, there exists an extended isomorphism

E(X) MeE(Y) Mf for some e- e, f ff e B
by Lemma 4. Hence BgBf by Lemma 9. Since B is a left self-
injective, regular ring with Condition (0) for B by Lemma 10, we
have B(1-)B(1-f) by Corollary 8. This implies

M(1-e)M(1-y)
by using again Lemma 9, completing the proof.

Similarly we can also prove Theorem 1 in case M is a quasi-
injective R-module ([2 and [6).

Corollary 11. Let M be a quasi-injective R-module with
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Condition (0). Then any isomorphism between two R-submodules
of M can be extended to an automorphism of M.

4. Remarks on Condition (0). In this section we shall
examine the properties of Condition (0) and of the following condi-
tion"

Condition (0’). xy-1 in a ring S implies yx-1.
Now consider the following statements"
1 M satisfies Condition (0).
2 ,B satisfies Condition (0).

(2’) B satisfies Condition (0’).
3 -B satisfies Condition (0).

(3’) B satisfies Condition (0’).
Then we have the following implications"

(3) @ (2)@==}(1)

(3’) (2’)
Proof. (3’) implies (2’). Let xy-1 in B. Then (yx)-y(xy)x

=yx and 5y-1 implies y-1 by (3’). Hence yx-1.
(2’) implies (3’). Let 2-1 in B. Then xy is a unit, and there

exists an inverse element z of xy. xyz-1 implies yzx-1 by (2’)
and clearly 5-1. Hence 2- 1.

Other implications are trivial.
Moreover, if M is injective, then we can easily see the equiva-

lence of (1), (2), (2’), (3), and (3’).
N. Jacobson 4, Theorem 1 shows that if a ring S has the

ascending or the descending chain condition for principal left ideals
generated by idempotents, then S satisfies Condition (0’). Therefore
quasi-Frobenius rings, for example, satisfy Condition (0’).

Corollary (Y. Utumi [9, Theorem 5.6). Let S be a left
self-injective ring with Condition (0’). Then any isomorphism
between two left ideals of S can be extended to an automorphism

of the left S-module S.
Corollary (M. Ikeda [3, Theorem 2). Let Q be a quasi-

Frobenius ring. Then any isomorphism between two left (resp.
right) ideals of Q can be extended to an automorphism of the left
(resp. right) Q-module Q.
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