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1o As concerns the channels in the mathematical theory of in-
formation, we have discussed under operator method and have intro-
duced the notion of generalized channel in [3].

In this paper, we shall show a relation between certain general-
ized channels and normal expectations that is, the conjugate mapping
of a generalized channel having a special property is a normal ex-
pectation and the converse is true. Furthermore, by using this result,
we shall study that or which type yon Neumann algebra on a
Hilbert space g) there exists a aithful normal expectation o ull
operator algebra L()) onto .

2. Consider a von Neumann algebra , denote the conjugate
space as * and the subconjugate space of all ultraweakly continuous
linear functionals on as ), basing on the definition of Dixmier [2].

Let and be two von Neumann algebras, then a positive
linear mapping zr of , into , is called a generalized channel i zr
preserves the norm of positive elements. Then the following propo-
sition is obtained in [3].

Proposition 1. A positive linear mapping zr of . into , is a
generalized channel if and only if the conjugate mapping zr* is a
positive normal linear mapping of

_
into preserving the identity.

Let be avon Neumann algebra and 2 a von Neumann subal-
gebra of , then the positive linear mapping e of onto is called
an expectation of ) onto if e satisfies the following equalities"
(1) I:I
(2) (BAy=BA forll Ae/ and Be_@

Define the operator L on * or each A e such that
(3) Lf(X)=f(AX) or all f e * and X e ,
then we have ollowing theorem.

Theorem 2. Let be a yon Neumann algebra and _q3 a yon

Neumann subalgebra of , then a mapping zr of _. to . is a gen-
eralized channel and
( 4 ) zrLB=LBzr for any B 2
if and only if the conjugate mapping z* of to is a normal ex-
pectation.
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Proof. If is a generalized channel, then z* is a positive nor-
mal linear mapping of to preserving the identity, by Proposition
1. By the equalities (3) and (4),

f(r*(BX))- rrf(BX)=LBTf(X)= 7rLBf(X)
LBf(rr*(X))- f(Brr*(X))

for any f e _., X e o//, and B e _,
then we have

*(BX)=Bzr*(X) for any X e and B
Therefore * is a normal expectation of /to _.

Conversely, if 7r* is a normal expectation of to ., by Proposi-
tion 1, z is a generalized channel, furthermore by the property (2)of
expectation we have

L=LBr for any Be.
Theorem 3. In above Theorem 2, the expectation zr*’ is faithful

if and only if the generalized channel 7r satisfies the following condi-
tion"
( 5 for a positive element X in ., if f(X)-O for any f e r(.),

then X- O.
Proof. rg(X)-g(r*(X))-O for any g in . if and only if *(X)

=0. Then a necessary and sufficient condition that r* is faithful is
the condition (5).

3. Let be a von Neumann algebra and G .a group ot automor-
phisms of )/, from now on we shall call briefly *-automorphism auto-
morphism. In this place, depending on the terminology of Koves
and Sztics [4], we shall call G-finite if for any nonzero positive ele-
ment T in there exists a normal positive linear functional
such that

(T)#0 and (O(S))=(S) for any S in and 0 in G.
Put /a--{T e 0(T)= T for any 0 e G}, then a is a von Neumann
subalgebra of .

Suppose that is G-finite, then there exists a mapping T-T’ of
o//to which satisfies the following properties (i)-(vi), and the con-
verse is true [.4];

(i) for every T e and every ultraweakly eontinuous linear
funetional a on /which is invariant with respect to G, a(T)-a(T’),

(ii) T-.T’ is linear and strictly positive,
(iii) for T e o//and S e o, (ST)’-ST’ and (TS)’= T’S,
(iv) T-.T’ is ultraweakly and ultrastrongly continuous,
(v) for every T e, T= T’,
(vi) (t?(T))’--T’ for every T e j and e G.
Let be avon Neumann algebra on a Hilbert space and/:()

the full operator algebra on , then we can define an automorphism
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t?v, for every unitary operator U in , as following:

?v(T)=UTU* for any T e L().
So, denote by G(v) a group of all automorphisms of L()such as t?v,
then L()) is G(v)-finite if and only if is a product of finite type I
factors [4, Proposition 5].

Now let us investigate a necessary and sufficient condition with
respect to G() that for a finite von Neumann algebra acting on
a separable Hilbert space , there exists a faithful normal expecta-
tion of L()) onto .

Lemma 1. Let y be a I-factor on a countably infinite dimen-
sional Hilbert space , then there exists an isomorphism q of L()
onto y(R)L() which transforms onto (R)C#.

Proof. By the assumption that is countably infinite dimen-
sional, there exists an isomorphism of L() onto (R)L(). Put
_=V() then

_
is a I-subfactor of (R)L()). Since (R)C# is also

a I-subfactor of (R)L(), there is a unitary operator U in (R)L()
such that U_q3U-X--(R)C# [6, Lemma 3.3]. For every T e L(), put
q(T)=UZ(T)U-, then this mapping q is an isomorphism claimed in
the lemma.

Lemma 2. Let be a In-factor on a separable Hilbert space ,
then there exists a faithful normal expectation of L() onto .

Proof. I is finite dimentional, the lemma is clear by [9].
Suppose is countably infinite dimensional. It is sufficient to show
that there exists a aithful normal expectation e of (R)L() onto
A(R)C. In fact, suppose that there exists such a faithful normal
expectation e. Put

T’=q-((q(T))) or all T e L()),
where q is the isomorphism of L() onto (R)L() obtained in Lemma
1, then the mapping is a faithful normal expectation by the following
equality"

(AT)’= 4-((4(AT))) 4)-(4(A)(4(T))) A4-((4(T))) AT’
for any A e and T e L().

Now, let us show that there exists a faithful normal expectation
e of (R)L() onto Z(R)C. By the assumption that is separable,
there exists a faithful normal state 90 on L(). We define a mapping
7 of A. to ((R)L()), by

()=(R)0 for e,,
where ?(R)P0 is the ultraweakly continuous linear functional on
(R)/:() such that

(R)o(T(R)T.)=(T)o(T) for T e and T, e L()).
Since is a I-factor, there exists a faithful normal state 0 on .
For this state 90, z(90) is faithful on (R)/:(), therefore z satisfies
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the condition (5). On the other hand, for every A e /let us identity
A(R)I and A, then the condition (4) is satisfied. Hence the conjugate
mapping e=* is a faithful normal expectation of (R)L() onto

In Lemma 2, we can not exclude the assumption that is separa-
ble. That is, if there exists a faithful normal expectation of L()
onto a I-factor ), then ) is separable. In act, suppose that there
exists a faithful normal expectation e of L() onto a/n-factor . Be-
cause is a finite factor, there exists a faithful normal state f? on
j. For this state ff and the expectation e, we define a linear func-
tional as following"

+(T)-(f(Te) for T e L(2),
then is a faithful normal state on L(), and so L() is a-finite [2],
that is, is separable.

Theorem 4. Let be a finite yon Neumann algebra acting on a
separable Hilbert space . Then the next three conditions are equiva-
lent

( there exists a faithful normal expectation e of L() onto ,
(ii) L()) is G(v)-finite,
(iii) is a product of finite type I factors.
Proof. (ii) and (iii) are equivalent by [4, Proposition 5]. If

there exists a faithful normal expectation e of L(2)) onto , then, for
any finite normal trace f? on //, we define a linear functional v on
L(2) by

v(T)=(T) for any T e L().
Then v is a normal positive linear functional on L() such that

v(UTU*)-v(T) for any T e L() and any unitary U e .
By the assumptions that JZ is a finite von Neumann algebra and that
e is faithful, for any nonzero positive element T in L(), there exists
a finite normal trace (f0 on such that

Vo(T)-- po(T) #- O.
Hence L() is G(v)-finite. Therefore we have that (i)implies (ii).
Now let us show that (iii) implies (i). By the assumption, there exists
a set (E)e of projections in the center 2; of such that =//,

and that each , is a finite type I factor. Therefore by Lemma 2,
for each e I, there exists a faithful normal expectation e on L(),
=L(E()) onto ,. For any T in L(), define a mapping T-T of

L()) to Z by
Te- ll(TE,)’,

then the mapping TT is clearly a faithful normal expectation.
For a condition of the existence of a normal expectation of L()

onto which is not necessary faithful, it is discussed in [7] and [8].
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As a result of them, the equivalence relation of (i) and (iii) in above
Theorem 4 may have been known already.

In Theorem 4, (i) implies (ii) and (iii) without the separability of
the Hilbert space 2 which is clear by above proof. Then we have
following, [1, Proposition 6.2.4]

Corollary 1. Let be a non-atomic abelian yon Neumann alge-
bra acting a Hilbert space , then there does not exist a faithful nor-
mal expectation of L() onto .

Corollary 2. Let be a finite yon Neumann algebra acting on
a Hilbert space which is not necessary separable. If there exists a

faithful normal expectation of L() onto , there exists a faithful
normal expectation of L() onto ’, too.

Proof. By Theorem 4, L() is G(v)-finite. On the other hand
/.()G()=,. Therefore, by the theorem of Kovcs-Sztics, there
exists a faithful normal expectation of L() onto ’.

The converse of Corollary 2 is not true in generally. A trivial
example is given by the von Neumann algebra C on an uncountably
infinite dimensional Hilbert space .

The next corollary is an immediate consequence of Theorems 2,
3, and 4.

Corollary 3. Let be a finite yon Neumann algebra acting on a
separable Hilbert space . Then a necessary and sufficient condition
that there exists a generalized channel of , onto L(), which satis-

fies the conditions (4)and (5) is that is a product of finite type I
factors.
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