180. Note on Semigroups, which are Semilattices of Groups

By S. Lajos
K. Marx University, Budapest, Hungary
(Comm. by Kinjirô Kunugi, m. J. A., Oct. 12, 1968)

Let S be a semigroup. Following the terminology of A. H. Clifford [1], [2] we say that S is a semilattice of groups if S is a settheoretical union of a set $\left\{G_{\alpha}, \alpha \in I\right\}$ of mutually disjoint subgroups G_{α} such that, for every α, β in I, the products $G_{\alpha} G_{\beta}$ and $G_{\beta} G_{\alpha}$ are both contained in the same $G_{\gamma}(\gamma \in I)$.

Recently the author proved the following characterization of semigroups, which are semilattices of groups (see [3]).

Theorem 1. A semigroup S is a semilattice of groups if and only if

$$
\begin{equation*}
L_{1} \cap L_{2}=L_{1} L_{2} \tag{1}
\end{equation*}
$$

and
(2)

$$
R_{1} \cap R_{2}=R_{1} R_{2}
$$

for any two left ideals L_{1}, L_{2} of S and right ideals R_{1}, R_{2} of S, respectively.

In this note we give another characterization of semigroups, which are semilattices of groups.

Theorem 2. A semigroup S is a semilattice of groups if and only if
(3)

$$
L \cap A=L A
$$

and
(4) $\quad R \cap A=A R$
for any left ideal L, right ideal R, and two-sided ideal A of S.
Proof. Necessity. Let S be a semigroup which is a semilattice of groups. Then it is an inverse semigroup every one-sided ideal in which is a two-sided ideal (see [2]). This implies that
(5)

$$
A \cap B=A B
$$

for any two ideals A, B of S. Therefore the relations (3), (4) are satisfied.

Sufficiency. Let S be a semigroup having the properties (3) and (4) for any left ideal L, right ideal R, and two-sided ideal A of S. In case of $A=S$ the equality (3) implies
(6)
$L \cap S=L S$.
This means that any left ideal L is also a right ideal of S, whence L
is a two-sided ideal of S. Consequently the relation (1) is satisfied for any two left ideals L_{1}, L_{2} of S.

Analogously, in case of $A=S$ the equality (4) implies that

$$
\begin{equation*}
R \cap S=S R \tag{7}
\end{equation*}
$$

that is, any right ideal R is a two-sided ideal of S. Therefore the relation (2) follows from (4). Finally Theorem 1 implies that S is a semilattice of groups.

Theorem 1 and Theorem 2 imply the result as follows.
Theorem 3. For a semigroup S the following conditions are equivalent:
(A) S is a semilattice of groups.
(B) $L_{1} \cap L_{2}=L_{1} L_{2}$ for any two left ideals L_{1}, L_{2}, and $R_{1} \cap R_{2}=R_{1} R_{2}$ for any two right ideals R_{1}, R_{2} of S.
(C) $L \cap A=L A$ and $R \cap A=A R$ for any left ideal L, right ideal R, and two-sided ideal A of S.

References

[1] A. H. Clifford: Bands of semigroups. Proc. Amer. Math. Soc., 5, 499-504 (1954).
[2] A. H. Clifford and G. B. Preston: The algebraic theory of semigroups. I, II. Amer. Math. Soc., Providence, R. I. (1961, 1967).
[3] S. Lajos: Characterizations of semigroups, which are semilattices of groups (in Hungarian). Magyar Tud. Akad. Mat. Fiz. Tud. Oszt. Közl. (to appear).

