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172, Semigroups Satisfying xy”=yx"=(xy™)"

By D.G. MEAD and Takayuki TAMURA

University of California, Davis, California

(Comm. by Kenjiro SHODA, M. J. A., Oct. 12, 1968)

Recently E. J. Tully [5] determined the semigroups satisfying an
identity of the form xzy=ymxz"; Tamura [4], one of the authors,
studied the semigroups satisfying an identity xy=ymam. ..y s,
and Mead [2], the other author, found a necessary and sufficient con-
dition in order that an implication, x"y™=y*x'—xrym™ =y x™, hold in
all semigroups. Related to these works the purpose of this paper is
to find the structure of semigroups satisfying an identity of the form

(%) wymr=yxm=(xy™)",  n>1.

Let L be a semilattice and {S,:a e L} be a family of disjoint
semigroups. If a semigroup S is a union of disjoint subsemigroups
S, @ € L, and if S/ is isomorphic with S, for all « and S.,S;CS.; for
all a, B e L, then S is called a semilattice-union of S,, « € L, or a semi-
lattice of S,, a € L. A semigroup S is called a Clifford semigroup if
S is a union of groups.

Lemma. A Clifford semigroup S is commutative if and only if S
18 a semilattice-union of abelian groups.

Proof. S is a semilattice-union of completely simple semigroups
S, by Theorem 4.6 [1]. Since S is commutative, each S, is an abelian
group. The converse is obtained from Theorem 4.11 [1].

Let I be an ideal of a semigroup S and S/I=Z. Then S is called
an ideal extension of I by Z.

Theorem. The following three statements are equivalent.

(1) A semigroup S satisfies the identity (x).

(2) A semigroup S contains a commutative Clifford subsemi-
group M and satisfies

2.1) z**'=zx for all xe M, where k is the greatest common
divisor of m—1 and n—1.
2.2) aymeM forall x,ye S.

(8) A semigroup S is a semilattice-union of semigroups S,,
a e L, such that each S, is an ideal extension of a group G, by Z, and
the following conditions are satisfied :

(8.1) FEach G, is abelian and satisfies z*=e for all x e G,,
where e is the identity element of G., k being defined
in (2.1).
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8.2) Z, satisfies xy™=0 for all x,ye Z,.
8.3) Ifx,e8,and yseS,, a#p, then z,yy € G,p.

Proof. (1)—(2). Suppose that a semigroup S satisfies the
identity (x). Let M={xy™:x,ye S}. M is a subsemigroup of S and
z=2z", n>1, for all ze M, by (x). Since every element of M is of in-
dex 1, M is a union of groups (Ex. 1.7, 6(a), p. 23 [1]), hence M is reg-
ular (p. 26 [1]). Also by (%) any two idempotents of M commute.
Therefore S is an inverse semigroup by Theorem 1.17, [1]. According
to Ex. 4.2, 2, p. 129 [1], M is a semilattice-union of groups, say

M= U G,.

a€L

The identity () in the groups G, turns out to be
r=zm=g" and xy=yx for all 2,y e G,
that is, G, is abelian and satisfies (2.1). By the Lemma the Clifford
semigroup M is commutative. (2.2) is clear by the definition of M.
(2)—(3). Assume (2), M= U G,, G, abelian groups. By (2.1)

a€L
and (2.2) there are positive integers I such that x' are idempotent for

all ze S. For example I=(m-+1)(n—1). First we notice that
(4) if eis any idempotent, eze=ze for all ze S
since ¢, ze € M by (2.2) and M is commutative. Let z'=e, y'=f, and
(2y)'=h where e, f, h are idempotents. To prove A=cef,
h=(xy)'=(xy)h={(xh) (YW} by (4)
=(xh)(yh)* by commutativity of M
=@ by (4)
=(eh)(fh)
=efh by (4)
and ef =2yl =y ' f=2'fy'f=(y)' f=hf by the same reason. Hence
h=efh and ef =hf. Since the idempotents from a semilattice h=efh
=hfh=hf=ef. Consequently we have
(5) (xy)' =y’
that is, the mapping x—z' is a homomorphism of S onto the semilat-
tice L, of all idempotents of S. Clearly L,CM and L, is the set of
identity elements of G,, « € L ; hence L,=L, so we identify L, with L.
Let e, be the identity element of G,. We define S, by
S,={reS:a'=e,}.
Then G,ZS, and
(6) S= U S..

a€L
Each S, is unipotent, i.e., has a unique idempotent e,, and S, is inver-

sible in the sense of [3], and it is easily seen that

S.e,.=G,
hence G, is an ideal of S, (see [3]). The condition (3.1) is obvious by
the assumption ; (8.2) and (8.3) are obtained by (2.2).
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(8)—(1). Assume (3) and let S= U S, and M= U G,. Since

a€EL a€L

@G, is abelian, M is commutative by the Lemma. By (3.2) and (3.3)
z Yy e G, for all x,e8,, y,€8, It follows from (3.1) that z,y7
=(2,y7)". We need to prove z,yr=y,x7. Both z,y7 and y,2™ are in
G,.s. Since M is commutative and e, ze € M, we can apply (4) to the
present case again. Using (4) and (3.1)
BYF = LoY5 Cap= L uCap(Ypup)™ = (£,€,5)(Yp.p)
=(Yp€.p)(X,.0) = (Y3€,p)(X,€,5)™ =Y, X7
This completes the proof of the theorem.

Remark 1. We can prove directly (1)—(8) by means of (5), and
the minimum [, of I’s which act in the proof of (2)—(8) is determined
as follows :

l, is the minimum of the positive integers greater than or equal
to m+1 and divisible by k.

Remark 2. M is a left ideal of S but need not be an ideal.

Example. The semigroup S defined by the Cayley table:

a c d

QL O e
SR & ¢

a
a
a
a

S ! 2 9
L e e

S satisfies the identity xy*=ya?’=(xy??* and M={a, d} is a left ideal
but not a right ideal.
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