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1. The following theorems are due to Izumi [2]"

Theorem A. Let f(t) an COS nt. If

ldf(t) l<c and (ii) {nA(nan)} e BV

for some 0, then

Theorem B. Let g(t) b sin nt. If

( )* dg(t) < and (ii)*

for some 0, then

Theorem C. Let f(t) an COS nt. If

{nzI(nbn)} e BV

( )’ f(t) e BV(O, r) and (ii)’ {nzl(nan)} e BV
for some ( 0, then Elan I/logn c.

Theorem D. Let f(t)N an cos nt and let c fl + 2 and t9 0. If

Theorem 1. Let f(t) a COS nt. If

(1.1) 0log df(t) < oo

and

e a, eBV,
en"

then

Theorem 2.

(1.3)

Let g(t) bn sin nt with g( +O)=O. if

and (1.2) holds, then F, b < co.

( )" ft-/ df(t) and {(logn)"zl(na)} e BV,
d

then F, la,l < oo.

In this note the following theorems will be established which are

generalizations of the results mentioned above"
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Theorem 3.

(1.4)
and

(1.5)

then

Let f(t) , a cos nt.

f(t) e BV(O, )

l avev"
log(v+1)

e BV,

Theorem 4.

(1.6)

(1.7)

if

log (n+ 1)

If f(t) , an COS nt and

1 a,e,(lo,)_e}eBVen(logn)-

where -1+1/y and 70, then ,[an[C.
2. The following lemmas will be required or the proof of our

theorems"

Lemma 1 [3]. If {c} e BV, then 1
1 [-nCn e BV, where

Lemma 2. If the sequence {nA(nan)} e BV for some 0, then
1 ,ae.}eBV, whereOl.

There is no loss of generality in assuming that 0( 1
Now

1 1

e
F, A(ra) e nan e----- en" r

L+ Lf, say.

Since {. 1 _,e"}e. BVitfollowsbyvirtueofLemmalthat,,
ena ?’

Using Lemma 1 and the hypothesis we find L e BV.

L=. 1 a- A(k) e
en" r

Also

Lf+ L.2, say.

L.2 is obviously of bounded variation. :Now
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1L22
en"

which will be of bounded variation if

But

Since

Since - e BV, it suffices to prove that

n , (e./r.)rq_____-l(e__ff__/_r_. _-_e([_ !r- 1>->
en

Lemma 3 [1].

(i) ’)n+ e BV

then

(e"/r.)(r.-_r-D

and a is some fixed positive integer, the result follows.

If , an is summable JR, , k I, k 0 and

{1 5 a2} e BV,and (ii)

Lemma 4. Let f(t) F, a= cos nt. If log - df(t) < c, then

F, a is summable IR, e=", 11, where O<a <1.

Proof. The series , an is summable R, e", 11 if the integral

dw < oc).

2 2y sinnt df(t).cos nt f(t)dt= --Now an -- n
Therefore

[w-2dw e"i ,sin nt,df(t)
ena < n

k df(;)1__
log

, en. sin nt
k ena<w n

k 1

log k
2(w, t)

k---i log -Idf(t>l log
t

where
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?(w, t)- F, e" sin nt_ O(w(log w)-/"-)
ena<w n (O(w(log W)-)

[3].

Since log- Idf(t) l<c it is sufficient to show that

: ( k) uniformly in O<t<w-l i(w, t) dw- 0 log-Let-/(1-)andT- and

;; flr +--MI+M, say.

Now

Also

k for O<t<

M2- O (,r w-(log w)-l/"t-dw)
=O(t- T-/")--O(t-()-)-0(1)
(k) O<t<7.=0 log--

This complets the proof of Lemma 4.

Lemma 5 [4].

(2.1)

(2.2)

or, equivalently

If g(t) F, bn sin nt and

g(+0)-0,

log - dg(t) <c

g(t)l eL(O, ) and g(t)log-k-k e BV(O, r), then the
t

Lemma 6 [4]. If f(t), an COS nt and f(t) e BV(O, r), then

a
log (n+ 1)

is summable JR, en", 1 ], 0 <a < 1.

Lemma 7. Let f(t) F, a= cos nt and t-rldf(t) <c, then F, a
is summable IR, en(in)-, II, where y>O and (-1+1/,.

Proof. The series F, a is summable [R, e(g)-, 1l if

Since an

w-dw F, en( n)-a < c.
en (log n) -<w

__2Ii sinnt df(t), the above integral is
r n

series F, bn i8 summable JR, en", 1 l, 0 <a <1.
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where

that

df(t) . e(o )_ sin nt
en (log n)-/}<w n

sin n$
g(w, t)- F, e )-(log n) n

IO(w(log w)-(log log w)-t-)
(O(w(log w)-9.

By hypothesis it-ldf(t)]-O(1), it is therefore sufficient to prove

We write

Now

t;:w-lg(w, t)ldw-O(1) uniformly in 0<t<.

T-eet-r and tr-trffl* + trf-N+ N., say.

N- O(trt-r) 0(1) for O( t(

N.-O ( tr-l/w-(log w)-(log log w)-dw)
=O(tr-[(log log w)-+117)

(tr-(log log T)-/r) O(tl(t-r)-/r)
=O(tr)-O(1) uniformly in

This completes the proof o Lemma 7.

Lemma 8. If the sequence {(log n)"A(na)} e BV, then

e(o)_
e()-a e BV for >0.

Proof. It is sufficient to assume that -. Now
1 e(s )-

e()_
(log k)A(ka)

(log
na e(o )-+

e()_ S+S, say.
k=2

Since {(log k)A(ka)} BV, S e BV by virtue of Lemma 1, provided

e-" (log ) =
he above expression is of bounded variation

1 e(-

e(- (logi
e
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This expression can be written as
ek(log k) -3 e(k-1) (log (k-l))1 ek(o k)-(log k)-en(log n)- ek(log k)-_ e(-l) (log (k-l))

which is of bounded variation by virtue of the fact that
(logk)-ek( k)-3

ek (log k) e (k- 1) (log (k- 1)
BV

This completes the proof of the lemma.
3. Proof of the theorems. By virtue of Lemma 4, a, is sum-

mable IR, e"", 1],01. Applying Lemma 3 the proof of Theorem
I follows immediately. Similarly the proofs of Theorems 2, 3, and 4 are
evident in view of Lemma 3 and Lemmas 5, 6, and 7 respectively.

Remark. It may be observed that the second condition in each
of our theorems is lighter than the corresponding conditions of Izumi.
Also these conditions are necessary or the absolute convergence of
the corresponding series.
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