207. On Axiom Systems of Commutative Rings

By Sakiko ÔHASHI

(Comm. by Kinjirô KUNUGI, M. J. A., Nov. 12, 1968)

Recently G. R. Blakley gives an interesting axiom system of commutative rings (see G. R. Blakley [1]).

In this short Note, we give some new axioms of commutative rings and semirings that the addition and multiplication are commutative.

Theorem 1. A set with two nullary operations, 0 and 1, with one unary operation, -, and with two binary operations, + and juxtaposition such that

- 1) r+0=r,
- r1=r,
- 3) ((-r)+r)a=0,
- 4) ((ay+bx)+cz)r = b(xr)+(a(yr)+z(cr))

for every a, b, c, r, x, y, z, is a commutative ring with unit element.

Remark. It is obvious that every commutative ring (with unit element) satisfies 1)—4).

Proof. The proof is divided into several steps.

= b + (a + c).

5)
$$(-r) + r$$

$$= ((-r) + r)1$$

$$= 0.$$

$$(3)$$
6)
$$0a$$

$$= ((-0) + 0)a$$

$$= 0.$$

$$(3)$$
7)
$$a + b$$

$$= ((a1 + b1) + 00)1$$

$$= b(11) + (a(11) + 0(01))$$

$$= b + a.$$

$$(2, 6)$$

$$= b(11) + (a(11) + 0(01))$$

$$= b + a.$$

$$(2, 6, 1)$$
8)
$$cz$$

$$= ((00 + 00) + cz)1$$

$$= 0(01) + (0(01) + z(c1))$$

$$= 2c.$$

$$(b + a) + c$$

$$= (a + b) + c$$

$$= (a1 + b1) + c1)1$$

$$= b(11) + (a(11) + 1(c1))$$

$$(4)$$

{2}

916 S. ÔHASHI [Vol. 44,

$$\begin{array}{lll} 10) & (ay)r \\ & = ((ay+00)+00)r & \{1,6\} \\ & = 0(0r)+(a(yr)+0(0r)) & \{4\} \\ & = a(yr). & \{6,1,7\} \\ \end{array} \\ 11) & (a+b)r \\ & = ((a1+b1)+00)r & \{2,1,6\} \\ & = b(1r)+(a(1r)+0(0r)) & \{4\} \\ & = br+ar & \{2,8,6,1\} \\ & = ar+br. & \{7\} \\ \end{array}$$

12) For given a, b, a+x=b is solvable. Let x=(-a)+b, then we have

$$a + ((-a) + b)$$

= $(a + (-a)) + b$ {9}
= b . {5, 1, 7}

Therefore the proof of Theorem 1 is complete.

Theorem 2. A set with two nullary operations, 0 and 1, with two binary operations, + and juxtaposition such that

1)
$$r+0=r$$
,
2) $r1=r$,
3) $0r=0$,
4) $((ay+bx)+cz)r=b(xr)+(a(yr)+z(cr))$

for every a, b, c, r, x, y, z, is a semiring with 0 and 1 that these binary operations satisfy the commutative laws.

Proof. We divide our proof into some steps.

5)
$$a+b$$

$$=((a1+b1)+00)1 \qquad \{2,1,3\}$$

$$=b(11)+(a(11)+0(01)) \qquad \{4\}$$

$$=b+a. \qquad \{2,3,1\}$$
6) ab

$$=((00+00)+ab)1 \qquad \{1,5\}$$

$$=0(01)+(0(01)+b(a1)) \qquad \{4\}$$

$$=ba. \qquad \{3,1,5\}$$
7) $(b+a)+c$

$$=(a+b)+c \qquad \{5\}$$

$$=((a1+b1)+c1)1 \qquad \{2\}$$

$$=b(11)+(a(11)+1(c1)) \qquad \{4\}$$

$$=b+(a+c). \qquad \{2,6\}$$
8) $(ay)r$

$$=((ay+00)+00)r \qquad \{1\}$$

$$=0(0r)+(a(yr)+0(0r)) \qquad \{4\}$$

$$=a(yr). \qquad \{1,5,3\}$$

9)
$$(a+b)r$$

$$= ((a1+b1)+00)r$$

$$= b(1r)+(a(1r)+0(0r))$$

$$= br+ar$$

$$= ar+br.$$
 {2, 1}
{4}
{2, 3}

Hence the proof of Theorem 2 is complete.

Next we consider another axiom system which characterizes a commutative ring.

Theorem 3. A set with two nullary operations, 0 and 1, with one unary operation, -, and with two binary operations, + and juxtaposition such that

1)
$$r+0=0+r=r$$
,
2) $r1=r$,

$$((-r)+r)a=0,$$

4)
$$((ay+b)+c)r = rb + (a(yr)+cr)$$

for every a, b, c, r, y, is a commutative ring with unit element.

Remark. It is obvious that every commutative ring (with unit element) satisfies 1)—4).

Proof.

5)
$$(-r)+r$$

 $=((-r)+r)1$ $\{2\}$
 $=0.$ $\{3\}$
6) $0a$
 $=((-0)+0)a$ $\{5\}$
 $=0.$ $\{3\}$
7) br
 $=((00+b)+0)r$ $\{1, 6\}$
 $=rb+(0(0r)+0r)$ $\{4\}$
 $=rb.$ $\{6, 1\}$
8) $a+b$
 $=((a1+b)+0)1$ $\{2, 1\}$
 $=1b+(a(11)+01)$ $\{4\}$
 $=b+a.$ $\{2, 7, 6, 1\}$
9) $(ay)r$
 $=((ay+0)+0)r$ $\{1\}$
 $=r0+(a(yr)+0r)$ $\{4\}$
 $=a(yr).$ $\{6, 7, 1\}$
10) $(a+b)+c$
 $=((b+a)+c)$ $\{8\}$
 $=((b1+a)+c)1$ $\{2\}$
 $=1a+(b(11)+c1)$ $\{4\}$
 $=a+(b+c).$ $\{2, 7\}$

918 S. Ôhashi [Vol. 44,

$$\begin{array}{lll} & (a+b)r \\ & = ((a1+b)+0)r \\ & = rb + (a(1r)+01) \\ & = rb + ar \\ & = ar + br. \end{array} \hspace{0.5cm} \begin{array}{ll} \{2,\,1\} \\ \{4\} \\ \{2,\,6,\,1\} \\ \end{array}$$

12) For given a, b, a+x=b is solvable. Let x=(-a)+b, then we have

$$a+((-a)+b)$$

= $(a+(-a))+b$ {10}
= b . {5, 8, 1}

Therefore the proof of Theorem 3 is complete.

Theorem 4. A set with two nullary operations, 0 and 1, with two binary operations, + and juxtaposition, such that

1)
$$r+0=0+r=r$$
,
2) $r1=r$,
3) $0r=0$,
4) $((ay+b)+c)r=rb+(a(yr)+cr)$

for every a, b, c, r, y, is a commutative semiring.

Remark. It is obvious that every commutative semiring (with unity) satisfies 1)—4).

Proof.

5)
$$br$$

$$= ((00+b)+0)r$$

$$= rb+(0(0r)+0r)$$

$$= rb.$$

$$(3, 1)$$
6)
$$a+b$$

$$= ((a1+b)+0)1$$

$$= 1b+(a(11)+01)$$

$$= b+a.$$

$$(2, 5, 3, 1)$$
7)
$$(ay)r$$

$$= ((ay+0)+0)r$$

$$= ((ay+0)+0)r$$

$$= a(yr).$$

$$(a+b)+c$$

$$= (b+a)+c$$

$$= ((b1+a)+c)1$$

$$= a+(b+c).$$

$$(a+b)r$$

$$= a+(b+c).$$

$$(a+b)r$$

$$= ((a1+b)+0)r$$

$$= ((a1+b)+0)r$$

$$= ((a1+b)+0)r$$

$$= (b+a)+c$$

$$= (2, 5)$$
9)
$$(a+b)r$$

$$= ((a1+b)+0)r$$

$$= ((a1+b)+0)r$$

$$= (2, 1)$$

$$= rb+(a(1r)+0r)$$

$$= rb+ar$$

$$\{2, 3, 1\}$$

 $=ar+br. {5, 6}$

Hence the proof of Theorem 4 is complete.

Reference

[1] G. R. Blakley: Four axioms for commutative rings. Notices of Amer. Math. Soc., 15, p. 730 (1968).