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207. On Axiom Systems of Commutative Rings

By Sakiko OmHASHI

(Comm. by Kinjird KUNUGI, M. J. A., Nov. 12, 1968)

Recently G. R. Blakley gives an interesting axiom system of com-
mutative rings (see G. R. Blakley [1]).

In this short Note, we give some new axioms of commutative
rings and semirings that the addition and multiplication are com-
mutative.

Theorem 1. A set with two nullary operations, 0 and 1, with
one unary operation, —, and with two binary operations, + and jux-
taposition such that

1) r4+0=7,

2) rl=7,

3) (=1 +7)a=0,

4) ((ay + bx) + cx)r=b(xr) + (alyr) + 2(cr))

for every a, b, ¢, 1, 2, Y, 2, i1s & commutative ring with unit element.
Remark. It is obvious that every commutative ring (with unit
element) satisfies 1)—4).
Proof. The proof is divided into several steps.

5) (=1 +r
=(—r+nl {2}
=0. {3}
6) O0a
=((—0)+0)a {5}
=0. {3}
7 a+b
=({(al+051)+00)1 {2, 6}
=b(11) 4+ (a(11) +0(01)) {4}
=b+a. 2, 6,1}
8) cz
=((00+00) + c2)1 {1,7,6,2}
=0(01) 4+ (0(01) + z(c1)) {4}
=ZzC. {1’ 7, 2}
9) b+a)+c
=(a+b)+c {7}
=((a1+01)+c)1 {2}
=b(11)+ (a(11) + 1(cl)) {4}

=b+(a+o). {2}
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10) (ay)r
=((ay +00)+ 00)r {1, 6}
=0(07) + (a(yr) + 0(07)) {4}
=a(yr). {6,1,7}
11) (a+Dd)r
=((a1+ b1)+00)r 2,1, 6)
=b(17)+ (a(17) + 0(07)) {4}
=br+ar {2,8,6,1}
=qr+ br. {1}

12) For givena, b, a4+2x=> is solvable. Let x=(—a)-+ b, then we
have

a+((—a)+b)
=(@+(—a)+b {9}
=b. 5,1, 7}

Therefore the proof of Theorem 1 is complete.
Theorem 2. A set with two nullary operations, 0 and 1, with
two binary operations, + and juxtaposition such that

1) r+0=r,

2) rl=vr,

3) 0r=0,

4) ((ay + bx) + c2)r =b(xr) + (a(yr) + 2(cr))

for every a, b, ¢, v, @, ¥y, 2, 1S a semiring with 0 and 1 that these
binary operations satisfy the commutative laws.
Proof. We divide our proof into some steps.

5) a+b
=((a1+b1)+00)1 2,1, 3}
=b(11) + (a(11)+0(01)) {4}
=b+a. {2, 3,1}
6) ab
=((00+00)+ab)1 {1, 5}
=0(01) +(0(01) + b(a1)) {4}
=ba. 3,1, 5}
D b+a)+c
=(a+b)+c¢ {5}
=((al+d1)+cl)1 2}
=b(11)+ (a(11) +1(cl)) {4}
=b+(a+0¢). {2, 6}
8) (apr
=((ay + 00)+ 00)r {1}
=0(07) 4 (a(yr) + 0(07)) {4}

=a(yr). {1, 5, 3}
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9) (a+0)r
=((a14b1)+00)r 2,1}
=b17r)+ (a(1r) + 0(07)) {4}
=br+ar {2, 3}
=ar+ br. {5}

Hence the proof of Theorem 2 is complete.

Next we consider another axiom system which characterizes a
commutative ring.

Theorem 3. A set with two nullary operations, 0 and 1, with
one unary operation, —, and with two binary operations, + and
Juxtaposition such that

1) r+0=0+r=r,

2) rl=r,

3) (=7 +1ra=0,

4) ((ay+b)+ )r=rb+(alyr) +cr)

for every a, b, ¢, v, Y, 1$ & commutative ring with unit element.
Remark. It is obvious that every commutative ring (with unit
element) satisfies 1)—4).

Proof.
5) (=1 +r
=(—n+nnl {2}
=0. {3}
6) Oa
=({(—0)+0)a {5}
=0. {3}
D br
=((00+ D) +0)r {1, 6}
=rb+(0(07)+07) {4}
=7b. {6, 1}
8) a+b
=((al+b)+0)1 {2, 1}
=1b+ (a(11)+01) {4}
=b+a" {2! 7’ 6, 1}
9 (ay)r
=((ay+0)+0)r {1}
=70+ (alyr) +07) {4}
=a(yr). {6, 7,1}
10) (@a+b)+¢
=b+a)+c {8}
=((01+a)+ 01 {2}
=1a+(b(11)+cl) {4}

=a+(b+0). 2,7}
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11) (a+d)r
=((a1+0)4+0)r 2,1}
=rb+(a(1r)+01) {4}
=rb+ar {2,6,1}
=ar+br. {8}

12) For given a, b, a+a=>b is solvable. Let x=(—a)+b, then
we have

a+((—a)+b)
=(e+(—a)+bd {10}
=b. {5, 8,1}

Therefore the proof of Theorem 3 is complete.
Theorem 4. A set with two nullary operations, 0 and 1, with
two binary operations, + and juxtaposition, such that

1) r+0=0+r=r,

2) 7’1=’}",

3) 0r=0,

4) ((ay+b)+ )r=rb+ (a(yr) +cr)

for every a, b, ¢, 1, Y, 18 a commutative semiring.
Remark. It is obvious that every commutative semiring (with
unity) satisfies 1)—4).

Proof.
5) br
=((00+0d)+0)r {1, 3}
=7rb+ (0(07) +0r) {4}
=7b. 3,1}
6) a+b
=((al+0)4-0)1 2,1}
=1b+(a(11)+01) {4}
=b+a. 2,5,3,1}
) (ay)r
=(ay+0)+0)r {1}
=70+ (a(yr) + 0r) {4}
=a(yr). {3, 5,1}
8) (@+b)+c
=0b+a)t+c {6}
=((bl+a)+o)1 {2}
=la+(bAD) +cl) {4
=a+(b+c). {2, 5}
9) (a+b)r
=(al+b)+0)r 2,1}
=rb+ (a(1r)+07) {4}

=rb+ar 2,3,1}
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=qr+br. {5, 6}
Hence the proof of Theorem 4 is complete.
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