990 Proc. Japan Acad., 44 (1968) [Vol. 44,

223. On a Product Theorem in Dimension®

By Yukihiro KopAMA
Department of Mathematics, Tokyo University of Education
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1. Let X be a topological space and G an abelian group. The
cohomological dimension D(X : G) of X with respect to G is the largest
integer n such that H*(X, A : G)+0 for some closed set A of X, where
H* is the Cech cohomology group based on the system of all locally
finite open coverings. If X is normal and dim X< oo, then D(X: Z)
=dim X by [2] and [5, II]. Here dim X is the covering dimension of
X and Z is the additive group of integers.

In this paper we shall show a product theorem for cohomological
dimension with respect to certain abelian groups. The theorem is
given by proving a product theorem for covering dimension and by
applying the same method as developed in [38] and [4]. We use the fol-
lowing groups:

Q=the rational field, Z,=the cyclic group of order p,

R ,=the subgroup of @ consisting of all rationals whose denomina-

tors are coprime with p.

Here p is a prime. Let G be one of the groups Z, Q, R,, and Z,, p a
prime. We shall show that the relation

(%) DXXxY: HsDX:®+DXY: &

holds if either (i) X is a paracompact Morita space and Y metrizable, or
(ii) X is a Lindelof Morita space and Y a g-space. See 2 for definition
of Morita spaces and o-spaces. It is well known that the relation (x)
is not true for arbitrary groups. Also, the equality D(XxY:G)
=D(X: @)+ D(Y : G) does not generally hold even if G is @ or Z,, and
X and Y are separable metric spaces. Next, let X be the Stone-Cech
compactification of X. If G is finitely generated, then it is known by
[56] that D(BX : G)=D(X : G). We shall prove that D(3X: ) =D(X : @)
if X is a paracompact Morita space and G is Q or R,, p a prime.
Throughout the paper all spaces are Hausdorff and maps are con-
tinuous.

2. Let m be a cardinal number =1. A topological space X is
called an m-Morita space if for a set 2 of power m and for any family
{Glay, -+, a)|ay, -+, € 25 1=1,2, -- .} of open sets of X such that
G(an e a)CG(a, -, (24D a'i+1) for Qg ooy Oy Qg € 2, =1,2,---,

#*  Dedicated to Professor A. Komatsu on his sixtieth birthday.
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there is a family {F(ay, ---,a) |y, -+, ;€ 2; 1=1,2, ...} of closed
sets of X satisfying the following conditions ;
(i) Flay, -, a)cGlay, -, a) for a;, -+, ;€ 2,1=1,2, -+

(i) if X=UJG(ay, - - -,a) for a sequence {a,} then X={ JF(as, - - -, ).
i=1 i=1

If X is an m-Morita space for any cardinal number m, then X is called
a Morita-space. An m-Morita space was introduced by Morita [11]
and called a P(m) space, and it played a very important role in the
theory of product spaces. A family § of subsets of a space is called
a net if for any point 2 and any neighborhood U of « there is a mem-
ber F of § such that x e FCU. A space X is called a g-space if it is
collectionwise normal and it has a o¢-locally finite net. Obviously a
metrizable space is a o-space but a g-space is not necessarily metrizable.
Also, it is known that a g-space is paracompact and perfectly normal
(Okuyama [18]). The main theorem in the paper is now stated; its
proof is given in the sequence of lemmas.

Theorem 1. Let G be one of the groups Z, Q, R,, and Z,, p a
prime. and let X and Y be spaces with finite covering dimension. If
either

(1) X is a Lindelof Morita space and Y is a o-space, or

(2) X is a paracompact m-Morita space and Y is a metrizable

space of weitght <m,
then the following relation holds:
(%) DXxY ®HDX:@®+DY: .

Let us begin to prove the following lemma.

Lemma 1. Let X be a normal space and Y o subspace. For any
finite open covering 1 of Y, suppose that there is a finite collection B
of open sets in X such that (i) the restriction B|Y is a covering of ¥
which refines 1 and (ii) each member of B is an F, set in X. Then Y
is normal and dim Y<dim X. Moreover, if dim X < co and G is finitely
generated, then D(Y :G)<D(X : ).

Proof. For a given finite open covering U of Y, take a finite col-
lection B of open sets of X satisfying the conditions (i) and (ii). Put
X,=U{V:Ve®B}. Since X, is an F, open set of X, X, is normal and
dim X,<dim X by [9, Theorem 2.1]. Take a finite open covering 28 of
X, such that % refines ¥ and order of W<dim X+1. Since X, is
normal, I8 is a normal covering. Thus the restriction 2B|Y is a nor-
mal covering refining 11 and of order <dim X+1. This implies that
Y is normal and dim Y<dim X. The second part of the lemma is
proved by a similar way as in the proof of [6, Theorem 1].

Lemma 2. Under the assumption (1) or (2) in Theorem 1
dim (X x Y)<dim (X x Y).
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Proof. We only prove the case (1). The case (2) is a consequence
of Lemma 1 and [6, Lemma 4]. Let Y be a g-space and let 8= U,
be a net of Y such that B,={V,,:ae®}, i=1,2, ..., is a g-locally
finite collection of closed sets. We can assume each B, is closed with

respect to finite intersection. Let usput F(a,, - -, )= (HVV%, O+ ooy
v=1

a,e 2. Then F={F(ay, -, ;) a, ---, a; € Q} is locally finite in Y
for i=1,2,.... Since Y is collectionwise normal and countably para-
compact, there is a collection B,={W(ay, ---, a):ay, ---, a; € 2} of
open sets of Y such that

(2-1) F(al, tt ai)c W(av ct ai)’

2.2 B, is locally finite in Y for (=1, 2, .- -.

Let U={U,: k=1, ---, s} be a finite open covering of XxY. For
k=1,...,sanday, - -, a; € 2, let T(ay, - -+, a;: k)={T,} be the collec-

tion of subsets in X satisfying the following condition ;

2.3) each T, is an open F, set in X and there is an open set V,in Y
such that F(a,, -+ -, a))CV,CW(ay, + -, a;) and T, x V,CU,.

Put T(ay, -, a;: k)=U{T,: T, ey, - -+, a;: k)} and T(ay, ---, ;)

=T+, a;: k). Then T(ay, -+, @y, a;.) DT, - - -, @) for a,,
k=1

a2, 1=1,2,..., and {T(ay, - -, a)XFlay, -+, @) ay,
e, a;60,1=1,2, ...} covers XxY. Since X is a Morita space,
there is a collection {S(ay, - -+, @)ty -+, a; € 2,1=1,2, - . .} of closed
sets in X such that
S(al? Tty ai)CT(ala o ’?ai): Ay * 00y aie'g, i:]-, 2, ] and
2.4 {Slay, -, a)xXFlay, -, a):a, -, a,€2,1,2, --.} covers
XxY.
Since S(a;, - - -, @) is normal and {T(ay, - - -, a;: k) : k=1, - . -, s} covers
S(ay, - -+, ), there is a closed set Pay, - -+, a;: k) in X such that

S(a,, ---,ai)=kCJP(a1, ek and Play, -, B)C T ay, - - -, aq k)
=1

for k=1, .-.,s. Now the collection («,, - - -, a; : k) covers a Lindelof
space P(ay, -+, a;: k) and hence a countable subcollection {T,:J
=1,2, ...} of T(ay, -+, a;: k) which covers P(a,, ---,a;: k). For
each member T),,, take an open F, set H,, in 8X such that H;; N X=T,,.
For each H,;, there is an open set V,; of Y by (2.3) such that (H,,; X V,,)

NXXY)CU,. PutH(ay, -+, o :k)=lez,><Vu. Then H(ay, - - -, a; 1 k)

is an open F, set in X XY such that

(2 5) P(av ] ai:k)XF(al’ ] ai)CH(al, "',aiik)ﬂ(XXY)
' CUkn(S((Xl,"',Ct'z:k)XW(an""ai)).

Finally, put Vi=U{H(ay, -, a;: k) :ay, -+, a2} and Vk=Qvg.
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Since the collection {S(a;, -, @, : )X W(ay, -+, a) iy, -+, a; € R} is
locally finite in BXXY by (2.2), {H(ay, -+, k)t ay, -+, ;€ 2} 18
locally finite in XX Y. Thus Vi and hence V, are open F, in SXXY.
Therefore the conditions (i) and (ii) in Lemma 1 are satisfied if SX XY,
XXY, U, and {V,} replace X, Y, U, and B respectively. The lemma
follows from Lemma 1.

Proof of Theorem 1 in case G=Z. By Morita [10, Theorem 4] we
know dim (XX Y)<dim X +dim Y=dim X+dim Y. Thus the theo-
rem is a consequence of Lemma 2.

Nagami [12] showed that if X is a paracompact Morita space and
Y is a g-space then X XY is paracompact. It is open whether the
relation dim (X X Y)<dim X +dim Y is true or not in case X is a para-
compact Morita space and Y is a g-space.

Next, let us prove Theorem 1 in case G is either @, R, or Z,, p a
prime. We shall apply a technique used in [3, p. 49] and [4, pp. 171~
172] and lately by Kuzminov. Consider the 2-dimensional Cantor
manifolds M,, M, in [3, p. 44] and Pontrjagin’s Cantor manifold P,.
We denote M,, M,, and P, by My, Mp,, and M, respectively.

Lemma 3. Let X be a paracompact space with dim X<k and let
G be any of the groups Q, R,, and Z,, p a prime. Then D(X:G)
=dim (X X M%) —2k. Here M% is the k-fold product MoXMgX ...
X Mg.

If G=Z,, then the lemma is proved by Kuzminov [7]. To complete
the proof, as known in the proof of [4, Theorem 2], it is enough to
show the following lemma.

Lemma 4. Let G=Q or R,, p a prime. If X is a paracompact
space with finite covering dimension, then
(1) DX:@=dim X if and only if dim (XX Myz)=dim X4 2.

(2) DXXM;: ®=DX:G)+2.

Proof. We prove only (2). The proof of (1) is similar. Let us
remind the construction of M,. Let T be the boundary of M, (see [3,
p. 44)) and let M,=M, /T and t, the point corresponding to T. Then
it is easy to show that
(2.6) H(M =G, H(M;)=0, and H'(M,)=Z.

Let A be a closed set of X and let X=X /A and a, the point correspond-
ing to A. Let n>0. Then we have

H(X, A)X (Mg, T): @=H*((X, a) X (Mg, t) : G)
@n zH"(XxMy: )=H"X: )OH**X: )=HX,A: R
SH"¥ X, A: Q).

The first isomorphism is a consequence of [6, Lemma 6], the second
follows from the cohomology sequence of (XX Mg, X x {t,} U{as} X M),
the third comes from (2.6) and [1, Theorem C], and the fourth is



994 Y. KopAMA [Vol. 44,

trivial. To complete the proof, let D(X : G)=n. We can assume that
n>0. There is a closed set 4 of X such that H*(X, A:G)+0. By
2.7 we can know D(X XMy : G)=n+2. Conversely, let D(XXM;:G)
=n+2. Then, by [5, I, Theorem 5] and the structure of M, there is
a closed set A of X such that H***((X, A)X (Mg, T) : G) 0, where T is
the boundary of M,. By 2.7 H*X, A : ®)+#n and hence D(X : G)=n.
This completes the proof.

Proof of Theorem 1 in case G is either @ or R,. Let k be a posi-
tive integer such that k>Max (dim X, dim Y). Since dim (X X Y) <2k,
by the theorem proved already in case G=Z, Lemma 3 means that
DXXY:@=dim (X XY X M%) —4k. Since M% is a compact metric
space, if X is an m-Morita space then X X M% is an m-Morita space by
[11, Corollary 3.5] and if Y is a o-space then Y X M% is a og-space.
Thus we know that dim (XX Y XM%¥)<dim (X X M%)+ dim (Y X ME).
Hence dim (XXYX M%) —4k<dim (XX M%) —2k+dim (Y X M%) — 2k
=D(X:G@)+D(Y:G) by Lemma 3. This completes the proof.

Let @, be the additive group of p-adic rationals mod 1. Then
D(szXszi Q,)=3 and D(sz: Q,)=1. Hence Theorem 1 is not
generally true for G=Q,. Also, we can not take the equality in place
of (%) in Theorem 1 even if G is Q or Z,. Because, let X be the set
of points in Hilbert space all of whose coordinates are rational. Since
dim X=1 and XXX is homeomorphic to X, D(X:G)=DXXX:G)
=1 for any group G.

Theorem 2. Let G=Q or R,, p a prime. If X is a paracompact
2-Morita space with finite covering dimension, then D(BX:GQ)
=D(X: @), where BX is the Stone-Cech compactification of X.

Proof. Let dim X<k. By [11, Corollary 4.6] X is an Y,-Morita
space. Since weight of M%=3%R,, Lemma 2 shows that dim (X X M%)
<dim (XX M%). Thus D(X:G)=dim (X X M§)—2k<dim (BX X M})
—2k=D(BX :G). This completes the proof.

Let X, be the metric space constructed by P. Roy [14]. Then
ind X,=0 and dim X,=1. Take the Freudenthal compactification yX,
of X,. Then ind yX=0 by [8, Theorem 6] and hence dim yX,=0 by the
compactness of yX,. Thus D(X,: )>D(X,:G) for any group G.
Therefore Theorem 2 is not generally true for an arbitrary compacti-
fication. The fact mentioned above was informed to me by Professor
Morita.
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