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223. On a Product Theorem in Dimension*’
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Department of Mathematics, Tokyo University of Education

(Comm. by Kinjir8 KUNU(I, M.J.)., Dec. 12, 1968)

1o Let X be a topological space and G an abelian group. The
cohomological dimension D(X" G) of X with respect to G is the largest
integer n such that H(X, A G):/=0 for some closed set A of X, where
H* is the Cech cohomology group based on the system of all locally
finite open coverings. If X is normal and dimX oo, then D(X’Z)
-dim X by [2] and [5, II]. Here dim X is the covering dimension of
X and Z is the additive group of integers.

In this paper we shall show a product theorem for cohomological
dimension with respect to certain abelian groups. The theorem is
given by proving a product theorem for covering dimension and by
applying the same method as developed in [3] and [4]. We use the fol-
lowing groups"

Q-the rational field, Z-the cyclic group of order p,
R,-the subgroup of Q consisting of all rationals whose denomina-
tors are coprime with p.

Here p is a prime. Let G be one of the groups Z, Q, R, and Z, p a
prime. We shall show that the relation

(.) D(X Y" G)<=D(X" G) +D(Y" G)
holds if either (i) X is a paracompact Morita space and Y metrizable, or
(ii) X is a LindelSf Morita space and Y a a-space. See 2 or definition
of Morita spaces and a-spaces. It is well known that the relation (,)
is not true for arbitrary groups. Also, the equality D(XY" G)
=D(X’G)/D(Y’G) does not generally hold even if G is Q or Z, and
X and Y are separable metric spaces. Next, let fiX be the Stone-ech
compactification of X. If G is finitely generated, then it is known by
[5] that D(flX" G)-D(X" G). We shall prove that D(flX" G)>=D(X" G)
if X is a paracompact Morita space and G is Q or R, p a prime.
Throughout the paper all spaces are Hausdorff and maps are con-
tinuous.

2. Let m be a cardinal number _>_1. A topological space X is
called an m-Morita space i or a set 9 o power m and or any amily
{G(cr, ..., a)]a, ..., a e 9; i=l, 2, ...} o open sets o X such that
G(a, ..., a) G(a, ..., a, a+) or a, ..., a, a+ e 9, i=1, 2, ...,
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there is a family {F(a, ., a) I, ..., e i- 1, 2, } of closed
sets of X satisfying the following conditions
(i) F(, ..., )G(, ..., ) for , ..., a e 9, i-1, 2,

(ii) if X- G(, .,) for a sequence {} then X-)F(, ..., ).
t--1

If X is an m-Morita space for any erdinal number m, then X is called
a Moria.space. An m-Morita spree ws introduced by Morit [11]
and called a P(m) space, and it played a very importan role in the
theory of product spaces. A family of subsets of a space is called
a net if for ny point x and ny neighborhood U of x there is a mem-
ber F of such that x eF U. A space X is called a a-space if it is
eolleetionwise normal and i has a a-locally finite net. Obviously a
merizble space is a-space but a-space is no necessarily metrizable.
Also, it is known th a a-space is praeompae and perfectly normal
(Okuyama [13]). The main theorem in the paper is now sated; its
proof is given in he sequence of lemms.

Theorem 1. Let G be one of the groups Z, Q, Rp, and Zp, p a
prime, and let X and Y be spaces with finite covering dimension. If
either

( 1 ) X is a Lindel6f Morita space and Y is a a-space, or

(2) X is a paracompact m-Morita space and Y is a metrizable
space of weight <= m,

then the following relation holds"
(.) D(X Y :G)<__D(X" G) + D(Y" G).

Let us begin to prove the following lemma.

Lemma 1. Let X be a normal space and Y a subspace. For any

finite open covering 1I of Y, suppose that there is a finite collection

of open sets in X such that (i) the cestriction I Y is a covering of Y
which refines 1t and (ii) each member of is an F, se in X. Then Y
is normal and dim Y_<_ dim X. Moreover, if dim X and G is finitely
generated, hen D(Y "G)<=D(X" G).

Proof. For a given finite open covering 1I of Y, take a finite col-
lection of open sets of X satisfying the conditions (i) and (ii). Put
X0- U {V" V e 3}. Since X0 is an F open set of X, X0 is normal and
dim X0_<_ dim X by [9, Theorem 2.1]. Take a finite open covering of

X0 such that refines and order of =<dim X+I. Since X0 is
normal, 9 is a normal covering. Thus the restriction IY is a nor-
mal covering refining 1I and of order =< dim X/ 1. This implies that
Y is normal and dim Y_<_dimX. The second part of the lemma is
proved by a similar way as in the proof of [6, Theorem 1].

Lemma 2. Under the assumption (1) or (2) in Theorem 1
dim (X Y) <= dim (fiX Y).
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Proof. We only prove the case (1). The case (2) is a consequence
of Lemma 1 and [6, Lemma 4]. Let Y be a a-space and let
be a net of Y such that ,={V,,’a e }, i-1, 2,..., is a a-locally
finite collection of closed sets. We can assume each , is closed with

respect to finite intersection. Let us put F(er, ..., o,)-V,, a, ...,
e 9. Then ,--(F(q, ..., ,)" a, ..., c, e 2} is locally finite in Y

or i-1, 2, .... Since Y is collectionwise normal and countably para-
compact, there is a collection ,={W(a, ..., ,)" , ..., a, e } of
open sets of Y such that
(2.1) F(c, ..., )cW(, ..., c),
(2.2) !2B is locally finite in Y for i-1, 2, ....
Let II-(U" k-l,..., s} be a finite open covering of XY. For
k- 1, ., s and c, ., q e/2, let T(c, ., c" k)-- {T} be the collec-
tion of subsets in X satisfying the following condition;

each T is an open F set in X and there is an open set V in Y
(2.3)

such that F(q, ..., )cVcW(q, ., q) and T Vc U.
Put T(q, ..., a" k)-- U{T" T e (a, ..., a" k)} and T(q, a)

) T(c, ..., " k). Then T(a, ..., a, +)DT(c, ..., c) or c1,

..,q,q.+eg, i--1,2,..., and {T(q,...,c)F(,...,q)’q,

..,qe,i-l, 2,...} covers XY. Since X is a Morita space,
there is a collection {S(, ., )" , .., e 9, i= 1, 2, } of closed
sets in X such that

S(a, ..., q)c T(q,, ..., c), r, ..., o e , i--l, 2, ..., and
(2.4) {S(q, ..., r)F(a, ..., q)’ , ..., e 9, 1, 2, ...} covers

XY.
Since S(, ..., a,) is normal and {T(, ..., ," k)"/c-1, ..., s} covers
S(, ..., c,), there is a closed set P(, ..., c," k) in X such that

S(c, ..., ,)=) P(, ..., ," k) and P(a, ..., c,"/c) T(c, ..., ,"
for k-l, ..., s. Now the collection %(, ..., ,"/c) covers a LindelSf
space P(c, ..., c," k) and hence a countable subcollection {T’]
--1, 2, .} of %(c, ., c,"/c) which covers P(, ., ," k). For
each member T, take an open F. setH in/SX such that H fX= Ta.
For each H, there is an open set Va of Y by (2.3) such that (H V)

f (X Y) U. Put H(c, ., c," k) JH V. Then H(c, .,
is an open F set in fiX Y such that

(2 5)
P(,...,c’k)F(,...,c)H(c,...,c’k)(XY)

U (S(, ..., " ]c) W(, ..., )).
Finally, put VL= U{H(q, ..., ," k)" q, ..., q, e 9} and V=VL.

i=l



No. 10] Product Theorem in Dimension 993

Since the collection {S(a, ..., a" k) W(a, ..., a)" a, ..., a e 9} is
locally finite in fiX Y by (2.2), {H(a, ..., a" k)" a, ..., a e tO} is
locally finite in fiX Y. Thus V and hence V are open F in fiX Y.
Therefore the conditions (i) and (ii) in Lemma I are satisfied if fiX Y,
X Y, t, and {V} replace X, Y, 1, and respectively. The lemma
ollows rom Lemma 1.

Proof of Theorem 1 in case G-Z. By Morita [10, Theorem 4] we
know dim (fiX Y) <= dim fiX+ dim Y- dim X+ dim Y. Thus the theo-
rein is a consequence of Lemma 2.

Nagami [12] showed that if X is a paracompact Morita space and
Y is a a-space then X Y is paracompact. It is open whether the
relation dim (X Y)=<dim X+ dim Y is true or not in case X is a para-
compact Morita space and Y is a a-space.

Next, let us prove Theorem 1 in case G is either Q, R or Z,, p a
prime. We shall apply a technique used in [3, p. 49] and [4, pp. 171-
172] and lately by Kuzminov. Consider the 2-dimensional Cantor
manifolds M0, M in [3, p. 44] and Pontrjagin’s Cantor manifold P.
We denote M0, M, and P by MQ, M, and Mz respectively.

Lemma :. Let X be a paracompact space.with dimXk and let
G be any of the groups Q, R, and Z, p a prime. Then D(X" G)
dim (X M)-2k. Here M is the t-fold product M M

Ma.
If G Z, then the lemma is proved by Kuzminov [7]. To complete

the proof, as known in the proof of [4, Theorem 2], it is enough to
show the ollowing lemma.

Lemma 4. Let G-Q or R, p a prime. If X is a paracompact
space with finite covering dimension, then
1 D(X" G)-dim X if and only if dim (X Ma)-dim X+ 2.

2 ) D(XM" G)-D(X" G) + 2.
Proof. We prove only (2). The proof of (1) is similar. Let us

remind the construction of Me. Let T be the boundary of Me (see [3,
p. 44]) and let Me=Me/T and to the point corresponding to T. Then
it is easy to show that
(2.6) H(M)- G, H(M) 0, and H(M)- Z.
Let A be a closed set of X and let X X/A and a0 the point correspond-
ing toA. Letn>0. Then we have

H/((X, A) (Ma, T) G)- Hn+((X, ao) (Ma, to)" G)
(2.7) -Hn/(XM" G)-H(X" G)Hn/(X" G)-H(X, A" G)

Hn+(Z, A" G).
The first isomorphism is a consequence of [6, Lemma 6], the second
ollows from the cohomology sequence of (X Mo, X {to} [2 {a0} M),
the third comes rom (2.6)and [1, Theorem C], and the ourth is
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trivial. To complete the proof, let D(X’G)-n. We can assume that
n0. There is a closed set A of X such that Hn(X, A" G):/:0. By
(2.7) we can know D(XMe’G)>=n+2. Conversely, let D(XMe’G)
=n/2. Then, by [5, I, Theorem 5] and the structure of Me, there is
a closed set A of X such that Hn/((X, A) (Me, T)" G)0, where T is
the boundary o Me. By (2.7) H(X, A’G)=/=n and hence D(X’G)>=n.
This completes the proof.

Proof o Theorem 1 in case G is either Q or R. Let k be a posi-
tive integer such that k Max (dim X, dim Y). Since dim (X Y)2k,
by the theorem proved already in case G-Z, Lemma 3 means that
D(X Y" G)-dim(X YM)-4k. Since M is a compact metric
space, i X is an m-Morita space thenXM is an m-Morita space by
[11, Corollary 3.5] and if Y is a a-space then YM is a a-space.
Thus we know that dim (X Y M)__< dim (X M)/ dim (Y M).
Hence dim (X YM)--4k<__dim (XM)--2k+dim (YM)--2k
-D(X’G) /D(Y" G) by Lemma 3. This completes the proof.

Let Q be the additive group o p-adic rationals mod 1. Then

D(MzMz" Q)-3 and D(Mz" Q)-I. Hence Theorem 1 is not
generally true or G-Q. Also, we can not take the equality in place
o (.) in Theorem 1 even if G is Q or Z. Because, let X be the set
of points in Hilbert space all of whose coordinates are rational. Since
dim X- 1 and XX is homeomorphic to X, D(X" G)--D(X X" G)
-1 for any group G.

Theorem 2. Let G-Q or Rv, p a prime. If X is a paracompact
2-Morita space with finite covering dimension, then D(X’G)
>=D(X" G), where fiX is the Stone-Cech compactification of X.

Proof. Let dim X(k. By [11, Corollary 4.6] X is an 0-Morita
space. Since weight of M=0, Lemma 2 shows that dim (XM)
__<dim (XM). Thus D(X" G)-dim (XM)-2k<__dim (flXM)
-2k=D(X’G). This completes the proof.

Let X0 be the metric space constructed by P. Roy [14]. Then
ind X0-0 and dim X0=l. Take the Freudenthal compactification yX0
of X0. Then ind yX=0 by [8, Theorem 6] and hence dim X0=0 by the
compactness of yX0. Thus D(Xo" G)D(yXo" G) for any group G.
Therefore Theorem 2 is not generally true for an arbitrary compacti-
fication The fact mentioned above was informed to me by Professor
Morita.

References

1 . Bartik" Cohomology o Alexandroff-Ceeh and mappings to Eilenberg-
MaeLane. Mat. Sbornik, 76, 231-238 (1968).

2 C.H. Dowker: Mapping theorems or non-compact spaces. Amer. J. Math.,
69, 200-942 (1947).



No. 10] Product Theorem in Dimension 995

3 Y. Kodama: Test space for homological dimension. Duke Math. J., 29,
41-50 (1962).

4 : Some chracterizatio.ns of homological dimension. Michigan Math.
J., 9, 167-172 (1962).

[5 : Note on cohomological dimension for non-compact spaces. I, II.
J. Math. Soc. Japan, IS, 34.3-359 (1966), 20, 490-497 (1968).

[6 : On subset theorems and the dimension of products (to appear in
American Journal of Mathematics).

7 V. Kuzminov: Test spaces for cohomological dimension of paracompact
spaces. Dokl. Akad. Nauk SSSR., 181, 538-541 (1968).

[8 K. Morita: On bicompactification of semibicompact spaces. Sci. Rep.
Tokyo Bunrika Daigaku, Sec. A, 4, 221-229 (1952).

9 : On the dimension of normal spaces. I. Japanese J. Math., 20, 5-36
(1950).

[10] : On the dimension of product spaces. Amer. J. Math., 75, 205-223
(1953).

[II] : Products of normal spaces with metric spaces. Math. Annalen, 154,
365-382 (1964).

[12] K. Nagami: a-spaces and product space (to appear).
[13] A. Okuyama: Some generalizatio.ns of metric spaces, their metrization

theorems and product spaces. Sci. Rep. Tokyo Kyoiku Daigaku Sec. A.,
9, 236-254 (1967).

[14] P. Roy: Failure of equivalence of dimension concepts for metric spaces.
Bull. Amer. Math. Soc., 68, 609-613 (1962).


