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92. Angular Cluster Sets and Oricyclic Cluster Sets

By Niro YANAGIHARA
Department of Mathematics, Chiba University, Chiba

(Comm. by Zyoiti SUETUNA, M. J. A., June 10, 1969)

1. Let G be the unit disk |2| <1 and I be its circumference |z|
=1. For a point { e, let V=V({) be an angle with vertex at { and
K=K() be an inscribed disk at {, that is,

KQ={z; |2—pl| <1—p},
where p is a constant, 0<p<1.
For a function f(z) given in G, we set
={a; there is a sequence z, € K({), 2,—(, f(z,)—a}.
C,V)=C(,V, f) is defined similarly.
We put
C%I(C’ f):LVJ C(C» V: f)’ CSD(C’ f):Q C(C’ K’ f)’

where summation and intersection are taken over all V({) and K({).
Cu and Cgp are called angular cluster set and oricylic cluster set, re-
spectively [2].

Obviously CacCp. We will show here that Cy(&, /)=Co({, )
except on a set of g-porosity of the order 1/2 (see the definition below),
for any arbitrary function f(z).

If Cx(, f) is the fine cluster set at { [4], Brelot and Doob [4]
proved that Cu(l, ) Cy(, /) for harmonic or holomorphic f(z).
Since K({) is a fine neighborhood of {, we have CycCgcCpo. Thus
the relation between Cy and Cgo will suggest some relation between Cy
and Cg.

2. Let us define some notions. A KK (or VV)-singular point
is the point { eI such that C(,K’, )=CKE, K", f) (or C&, V', f)
#=C(, V", 1)) for some pair of inscribed disks K'({) and K”/({) (or an-
gles V'({) and V”({)). The set of all KK (or VV)-singular points is
called KK (or VV)-singular set and denoted by E (/) (or Ey,(f)).

A GK (or GV)-singular point is the point eI such that
C& K, N#CE, 1 (or CK&,V, N#CE, ) for some KQ) (or V),
where C({, f) is the cluster set at {, that is,

C¢, f)={a; there is a sequence z, ¢ G, 2,—, f(z,)—a}.
GK (or GV)-singular set is denoted by E;x(f) (or Eg,(f)).
KV-singularity is defined analogously.
For a ¢>0, we set U({)={z; |2—{| <¢} (e-neighborhood). Sup-
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pose a set EC " and a point { e I" are given. Let #({,e)=1(, ¢, E) be
the largest of lengths of arcs contained in U,({) N I" and not intersect-
ing with E. The set F is of porosity of the order a, 0<a<1 (or sim-
ply of porosity (o)) at {, if

m %(r(c, ) >0.

E is of porosity (a) on I' if it is so at each { ¢ E. A set whichis a
countable sum of sets porosity («) is said to be of g-porosity («).

A set of g-porosity («) is of the first Baire category. When a=1
and E is measurable, it is of measure 0. But when 0<a <1, it may
be of positive measure.

Examples of sets, which are of the first category but not of o-
porosity (), can be constructed by procedures of the Cantor-type.

A set of (o-)porosity of the order 1 (a=1) is simply said of (o-)
porosity.

o-porosity of the order « can be considered as a precise version of
the first Baire category.

Dolzhenko [1] proved the following theorem: For any arbitrary
function f(z), not necessarily one-valued, E;,(f) is of type G,, and of
o-porosity. FKEg,(f) is F, and of the first category.

He also showed that: For any set of g-porosity there is a bounded
holomorphic function f(z) such that E,,(f)DFE. Even for bounded
holomorphic f(2), E;»(f) may be of measure 2rx.

Now we prove the following theorem by the method of Dolzhen-
ko’s paper.

Theorem 1. For any arbitrary function f(z), Exx(f) is of G,,
and of o-porosity.

Proof. Let {p,} be all rational numbers satisfying 0<p, <1, and
K, =K,(0) be the inscribed disk {z; |2—p0,{|<1—p,}. Let {D,} be
the sequence of all closed disks in the w-plane, having rational radii
r, and having rational points a, as centers.

E, . is the set of points { € I" such that

the set {w=f(2); z € K,,(0), dis(z, ") <1/m}

lies at a distance=r, from D,,. (1)
F. ,.q is the set of points { € I" such that
the set {w=f(2); z € K,(0), 1/3¢<dis(z, I)<1/q} (2)

has common points with D,.
Then K, , is closed and F',, ,, , is open. We put

Fﬂ,pzﬁ OFn,p,q and An,m,p=En,mnFn,p (3)

8=1 ¢g=s

We will show that
EKK(f): U An,m,p (4)
N, My P
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Take a point { € Exx(f). There exist K'({) and K"({), K'>K",
for which C({,K)22C({,K"”). Choose numbers p and s such that
K,Q)>DK'(§) and

D,NCE,K)+¢, dis(D,, C&, K")>br,. (5)

Then we can find a number m such that K({) D K,,({) and

dis(D,, f(@)>4r, for zeK,(Q)N{z;dis(z, [)<1/m}.
If D, is a disk with radius r,=2r, and concentric with D,,

dis(D,, f@)>r, for zeK, (O N{z;dis(z, [)<1/m},
which shows {eE, ,. In view of (5) there exists an infinite number
of q such that D, N{w=f(); ze K,(0), 1/3q<dis(z, [)<1/q}+# ¢,
which shows { e F, ,. Thus{e A, ., and Exx(f)CA, n p-

Take L e Ay . From (1), C(,K,)ND,=¢. On the other hand
from (2), C({,K,)ND,+¢. Thus we have C(, K,)#C(,K,) and
EKK(f) D147z,m,p'

The equality (4) shows that Ez(f) is of type G,,. It remains to
prove that A=A, ,, , is of porosity. If p,=<p,, C(, K,)DC(, K,) and
A must be void. Hence we assume 0,< 0.

Suppose A is not of porosity at a point { ¢ A. Then for sufficiently
small ¢>0, K, (QNU, Q) is covered by the set eLé)A K,(§). Thus if

ze K,(ONUL), there is a point £ € A, ze K,,(§). Therefore w= f(2)
lies at a distance =7, from D,, and C(, K,, f)ND, must be void.
This contradicts with the definition of F, , and the porosity of A is
proved.

3. Theorem 2. For any arbitrary function f(z), Exy(f) is G,,
and of g-porosity of the order 1/2.

Proof. Let {0.}, {K.}, {D,} have the same meanings as in the
proof of Theorem 1. We denote by V,, .=V, (L) the angle of opening
on7 /2 with vertex at { and with bisector forming an angle o, /2 with
inner normal to I" at .

E, . is the set of points { e I' such that

the set {w=f(2);2¢eV, (O NG, dis(z, [)<1/m}
lies at a distance=r, from D,,.
E, nisclosed. Put A, . ,=FE,n N F,,, where F, , is the one used
in proof of the former theorem. Then we can show as before that

EKV(f)= U An,m,k,p’

n,mk,p

which shows Exy is G,,. To see that A=A, ,, . , is of porosity (1/2),
we take G as the upper half plane, I" as the real axis, and { as the
origin. Then 0K is the circle #*+y*=2py, writing p instead of 1—p,.

Let M=\ V, (§). Suppose there exists a sequence z,=x,+ 1y,

geAd
—0, 2,e K,\M. Then the set A must omit intervals {I,}, where I, is
the intersection of an angle V® = — Va0 +2,={2;2=—Z+z,
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Z eV, (0)} with the real axis. |I,| (the length of 1)) is ayvg—;:apr,
where o is a constant depending on p,, and p,. From this we can in-
fer that if z, € U,(0), (0, &) =ba?, where b is a constant. Thus we have
Tim L (0, &)t >0,

€

=0

and obtain a contradiction to the assumption that 0 is not a point of
porosity (1/2) for A. Therefore, for ¢ >0 small enough, K,(0)N U,(0)
is covered by the set M. If ze K,NU, there is a point €A,
z2eV, (&), and w= f(2) lies at a distance>r, from D,. Thus C(0, K,)
ND,=¢. This is absurd in view of the definition of F, ,.

4. From the Theorems 1,2 and the Dolzhenko’s theorem quoted
in §2, we have

Theorem 3. For any arbitrary function f(z), there holds Ca(l, 1)
=Co(L, 1) at every L e I' except on a set of porosity (1/2).

Remark. Let u=h(t)=0, t=0, be a continuous and increasing
function. A set EC I can be defined to be of porosity in the h(t)-meas-
ure at { if
Hﬁ%h(«(c, €) >0.

&0

If t=h"*(u) is the inverse of h(t) and I = (w)u~*du < co, the set
1]

{z=7re’; §<h(1—1)} is a fine neighborhood of { [4]. We can show
that the set F'={{; Cua({, N\Cu(l, )+ ¢} is of g-porosity in the h(t)-
measure, where n(t) satisfies the above condition. Probably F would
be characterized more precisely.

Theorem 4. There is a bounded holomorphic function f(z) for
which E gz (f) is of measure 2r.

Proof. Fix an inscribed disk K(1)={z; |[z—p| <1—p}, 0<p<1.
There is a constant 8 such that an arc y={z=7e"; §=p+/1—7} is con-
tained in K(1). Choose t,, 0<¢,<1, t, /1 such that Jv1—¢%,<oco.
We define

_ o g—th
rO=1% 5a1

where the integers k, are determined by k,=[87/8v1—¢,]1+1. This
product converges since Y k,(1—t,)<oo. For every point { e I, K({)
contains an infinite number of zeros of f(2) and C({, K, f) contains 0,
but f(2) has angular limits of modulus 1 at almost every point of I.
Thus Exy(f) is of measure 27 (and of g-porosity (1/2)).

This gives by the way an example f(z) for which E;,(f) is of
measure 27.

5. Theorem 4 can be sharpened as follows.
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Theorem 5. Let ECI' be a closed set of porosity (1/2). Then
there is a bounded holomorphic function f(z) such that Ex,(f)=E.

Proof. E° consists of a countable number of ares I,=({’, ().
Let L({)=0K({) be an inscribed circle at {: L({)={z; |z—pl | =1—p}.
Except at most finite number of v’s, L({) N L({))#¢. Let z,,=2., be
the one of intersection points of L({’) and L({!) which is nearer to I.
For every n>>1, 2, , be the point on L({}) such that (1— |z, .|}/ |{,—%] x|
-_—%(1— |2)n_11)/18—2, 1| The sequence {z/,} on L({)) is defined
analogously.

Then 35 (1— |2 ,1)+ > (1—|2/s|)<oo, whence the Blaschke prod-

uct

z 22—z i 2—z"
f(z) — v, N ° v, N v, N ° v, N
. |Zn| 12 42 i l2nl 1=2)2

converges and defines a bounded holomorphic function in G. Since for
each {eE |{—2,|=|{—2. and (A— |7,/ |0 -2 .| =KI|{—7,]
for sufficiently large v, where K is a constant, we have

P [ A I [ 4
thus f(2) has an angular limit of modulus 1 at each point { € E' (Frost-
man [3]). But if 1>p>p’, K'({) for { € E contains an infinite number
of points from {2} ,, 2/'.},,» because of the porosity (1/2) of E. Thus
C(,K") 20, and all { € E belong to Ex,(f).

Since { € E¢ is not a limit point of zeros of f(z), f(z) is continuous
there. Hence at every { e E¢ C(£, V)=C({,K) and { ¢ E ;. ()).

Theorem 6. If E=UE® where E® is closed and of porosity
(1/2), there is a bounded holomorphic function f(2) for which E g, (f)
DE.

Proof. We can assume that E¥NE®=¢ if p+#v. For, if not
s0, set FO=F®, Since (F®)¢ consists of a countable set of open arcs
{IP, EO\EP=U  (E®NIP) and each E®NIP =P 1is closed. As
(EOUE®)° ig also a countable collection of open arcs, we see that
E®\(E®UE®) can be written as a countable sum of closed sets PY,
pairwise disjoint. Repeating this indefinitely and renumbering {P{}
as {F'®}, our assertion follows.

Corresponding to E® we construct a sequence of zeros {z{),} and
Blaschke product f,(2), as in Theorem 5. Set

FR=2 271 (2).

If (e E,, all f,(2) (v ) are continuous at {. Put B=}] 27*1.(0),
B,=B—f,{), where f,({) is the angular limit of f,(2) at {. Itis easily
seen that f(2)—B as z approaches { angularly, but f(z,)—B, as z{,
—{ in the inscribed disk K’({) (used in Theorem 5). Thus C(, V)={B}
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#C(, K, f) and { € Exy()).
6. We state the following theorems without proofs.
Theorem 7. If E=UE®, where E® is closed and of porosity,
there is a bounded holomorphic function f(z) for which Ex(f)DE.
Theorem 8. For any arbitrary function f(2), Eqx(f) is F, and

of the first category. E;x may be of measure 2m even for bounded
holomorphic f(z).
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