92. Angular Cluster Sets and Oricyclic Cluster Sets

By Niro YANAGIHARA

Department of Mathematics, Chiba University, Chiba

(Comm. by Zyoiti SUETUNA, M. J. A., June 10, 1969)

1. Let G be the unit disk |z| < 1 and Γ be its circumference |z| = 1. For a point $\zeta \in \Gamma$, let $V = V(\zeta)$ be an angle with vertex at ζ and $K = K(\zeta)$ be an inscribed disk at ζ , that is,

$$K(\zeta) = \{z; |z-\rho\zeta| < 1-\rho\},$$

where ρ is a constant, $0 < \rho < 1$.

For a function f(z) given in G, we set

$$C(\zeta, K) = C(\zeta, K, f)$$

 $=\{a : \text{there is a sequence } z_{\nu} \in K(\zeta), z_{\nu} \rightarrow \zeta, f(z_{\nu}) \rightarrow a\}.$

 $C(\zeta, V) = C(\zeta, V, f)$ is defined similarly.

We put

$$C_{\mathfrak{A}}(\zeta,f) = \bigcup_{V} C(\zeta,V,f), \quad C_{\mathfrak{D}}(\zeta,f) = \bigcap_{K} C(\zeta,K,f),$$

where summation and intersection are taken over all $V(\zeta)$ and $K(\zeta)$. $C_{\mathfrak{A}}$ and $C_{\mathfrak{D}}$ are called angular cluster set and oricylic cluster set, respectively [2].

Obviously $C_{\mathfrak{A}} \subset C_{\mathfrak{D}}$. We will show here that $C_{\mathfrak{A}}(\zeta, f) = C_{\mathfrak{D}}(\zeta, f)$ except on a set of σ -porosity of the order 1/2 (see the definition below), for any arbitrary function f(z).

If $C_{\mathfrak{F}}(\zeta, f)$ is the fine cluster set at ζ [4], Brelot and Doob [4] proved that $C_{\mathfrak{A}}(\zeta, f) \subset C_{\mathfrak{F}}(\zeta, f)$ for harmonic or holomorphic f(z). Since $K(\zeta)$ is a fine neighborhood of ζ , we have $C_{\mathfrak{A}} \subset C_{\mathfrak{F}} \subset C_{\mathfrak{D}}$. Thus the relation between $C_{\mathfrak{A}}$ and $C_{\mathfrak{D}}$ will suggest some relation between $C_{\mathfrak{A}}$ and $C_{\mathfrak{F}}$.

2. Let us define some notions. A KK (or VV)-singular point is the point $\zeta \in \Gamma$ such that $C(\zeta, K', f) \neq C(\zeta, K'', f)$ (or $C(\zeta, V', f) \neq C(\zeta, V'', f)$) for some pair of inscribed disks $K'(\zeta)$ and $K''(\zeta)$ (or angles $V'(\zeta)$ and $V''(\zeta)$). The set of all KK (or VV)-singular points is called KK (or VV)-singular set and denoted by $E_{KK}(f)$ (or $E_{VV}(f)$).

A GK (or GV)-singular point is the point $\zeta \in \Gamma$ such that $C(\zeta, K, f) \neq C(\zeta, f)$ (or $C(\zeta, V, f) \neq C(\zeta, f)$) for some $K(\zeta)$ (or $V(\zeta)$), where $C(\zeta, f)$ is the cluster set at ζ , that is,

 $C(\zeta, f) = \{a : \text{ there is a sequence } z_{\nu} \in G, z_{\nu} \rightarrow \zeta, f(z_{\nu}) \rightarrow a\}.$ $GK \text{ (or } GV)\text{-singular set is denoted by } E_{GK}(f) \text{ (or } E_{GV}(f)).$

KV-singularity is defined analogously.

For a $\varepsilon > 0$, we set $U_{\varepsilon}(\zeta) = \{z : |z - \zeta| < \varepsilon\}$ (ε -neighborhood). Sup-

pose a set $E \subset \Gamma$ and a point $\zeta \in \Gamma$ are given. Let $r(\zeta, \varepsilon) = r(\zeta, \varepsilon, E)$ be the largest of lengths of arcs contained in $U_{\bullet}(\zeta) \cap \Gamma$ and not intersecting with E. The set E is of porosity of the order α , $0 < \alpha \le 1$ (or simply of porosity (α)) at ζ , if

$$\overline{\lim}_{\varepsilon\to 0} \frac{1}{\varepsilon} (r(\zeta,\varepsilon))^{\alpha} > 0.$$

E is of porosity (α) on Γ if it is so at each $\zeta \in E$. A set which is a countable sum of sets porosity (α) is said to be of σ -porosity (α) .

A set of σ -porosity (α) is of the first Baire category. When $\alpha = 1$ and E is measurable, it is of measure 0. But when $0 < \alpha < 1$, it may be of positive measure.

Examples of sets, which are of the first category but not of σ -porosity (α) , can be constructed by procedures of the Cantor-type.

A set of $(\sigma$ -)porosity of the order 1 $(\alpha=1)$ is simply said of $(\sigma$ -) porosity.

 σ -porosity of the order α can be considered as a precise version of the first Baire category.

Dolzhenko [1] proved the following theorem: For any arbitrary function f(z), not necessarily one-valued, $E_{VV}(f)$ is of type $G_{\delta\sigma}$ and of σ -porosity. $E_{GV}(f)$ is F_{σ} and of the first category.

He also showed that: For any set of σ -porosity there is a bounded holomorphic function f(z) such that $E_{VV}(f) \supset E$. Even for bounded holomorphic f(z), $E_{GV}(f)$ may be of measure 2π .

Now we prove the following theorem by the method of Dolzhen-ko's paper.

Theorem 1. For any arbitrary function f(z), $E_{KK}(f)$ is of $G_{\delta\sigma}$ and of σ -porosity.

Proof. Let $\{\rho_m\}$ be all rational numbers satisfying $0 < \rho_m < 1$, and $K_m = K_m(\zeta)$ be the inscribed disk $\{z; |z - \rho_m \zeta| < 1 - \rho_m\}$. Let $\{D_n\}$ be the sequence of all closed disks in the w-plane, having rational radii r_n and having rational points a_n as centers.

 $E_{n,m}$ is the set of points $\zeta \in \Gamma$ such that

the set
$$\{w = f(z); z \in K_m(\zeta), \operatorname{dis}(z, \Gamma) < 1/m\}$$

lies at a distance $\geq r_n$ from D_n .

 $F_{n,p,q}$ is the set of points $\zeta \in \Gamma$ such that

the set
$$\{w = f(z); z \in K_p(\zeta), 1/3q < \operatorname{dis}(z, \Gamma) < 1/q\}$$
 has common points with D_n .

Then $E_{n,m}$ is closed and $F_{n,p,q}$ is open. We put

$$F_{n,p} = \bigcap_{s=1}^{\infty} \bigcup_{q=s}^{\infty} F_{n,p,q} \quad \text{and} \quad A_{n,m,p} = E_{n,m} \cap F_{n,p}$$
 (3)

We will show that

$$E_{KK}(f) = \bigcup_{n,m,n} A_{n,m,p} \tag{4}$$

Take a point $\zeta \in E_{KK}(f)$. There exist $K'(\zeta)$ and $K''(\zeta)$, $K' \supset K''$, for which $C(\zeta, K') \supseteq C(\zeta, K'')$. Choose numbers p and s such that $K_p(\zeta) \supset K'(\zeta)$ and

$$D_s \cap C(\zeta, K_p) \neq \phi, \quad \operatorname{dis}(D_s, C(\zeta, K'')) > 5r_s.$$
 (5)

Then we can find a number m such that $K''(\zeta) \supset K_m(\zeta)$ and

 $\operatorname{dis}(D_s, f(z)) > 4r_s \quad \text{for} \quad z \in K_m(\zeta) \cap \{z \; ; \; \operatorname{dis}(z, \Gamma) < 1/m\}.$

If D_n is a disk with radius $r_n=2r_s$ and concentric with D_s ,

 $\operatorname{dis}(D_n, f(z)) > r_n \quad \text{for} \quad z \in K_m(\zeta) \cap \{z \; ; \; \operatorname{dis}(z, \Gamma) < 1/m\},$

which shows $\zeta \in E_{n,m}$. In view of (5) there exists an infinite number of q such that $D_n \cap \{w = f(z) \; ; \; z \in K_p(\zeta), \; 1/3q < \operatorname{dis}(z, \Gamma) < 1/q\} \neq \phi$, which shows $\zeta \in F_{n,p}$. Thus $\zeta \in A_{n,m,p}$ and $E_{KK}(f) \subset A_{n,m,p}$. Take $\zeta \in A_{n,m,p}$. From (1), $C(\zeta, K_m) \cap D_n = \phi$. On the other hand

Take $\zeta \in A_{n,m,p}$. From (1), $C(\zeta, K_m) \cap D_n = \phi$. On the other hand from (2), $C(\zeta, K_p) \cap D_n \neq \phi$. Thus we have $C(\zeta, K_m) \neq C(\zeta, K_p)$ and $E_{KK}(f) \supset A_{n,m,p}$.

The equality (4) shows that $E_{KK}(f)$ is of type $G_{\delta\sigma}$. It remains to prove that $A = A_{n,m,p}$ is of porosity. If $\rho_m \leq \rho_p$, $C(\zeta, K_m) \supset C(\zeta, K_p)$ and A must be void. Hence we assume $\rho_p < \rho_m$.

Suppose A is not of porosity at a point $\zeta \in A$. Then for sufficiently small $\varepsilon > 0$, $K_p(\zeta) \cap U_{\epsilon}(\zeta)$ is covered by the set $\bigcup_{\xi \in A} K_m(\xi)$. Thus if $z \in K_p(\zeta) \cap U_{\epsilon}(\zeta)$, there is a point $\xi \in A$, $z \in K_m(\xi)$. Therefore w = f(z) lies at a distance $\geq r_n$ from D_n , and $C(\zeta, K_p, f) \cap D_n$ must be void. This contradicts with the definition of $F_{n,p}$ and the porosity of A is proved.

3. Theorem 2. For any arbitrary function f(z), $E_{KV}(f)$ is $G_{\delta\sigma}$ and of σ -porosity of the order 1/2.

Proof. Let $\{\rho_m\}$, $\{K_m\}$, $\{D_n\}$ have the same meanings as in the proof of Theorem 1. We denote by $V_{m,k} = V_{m,k}(\zeta)$ the angle of opening $\rho_m \pi/2$ with vertex at ζ and with bisector forming an angle $\rho_k \pi/2$ with inner normal to Γ at ζ .

 $E_{n,m,k}$ is the set of points $\zeta \in \Gamma$ such that

the set $\{w = f(z); z \in V_{m,k}(\zeta) \cap G, \operatorname{dis}(z, \Gamma) < 1/m\}$

lies at a distance $\geq r_n$ from D_n .

 $E_{n,m,k}$ is closed. Put $A_{n,m,k,p} = E_{n,m,k} \cap F_{n,p}$, where $F_{n,p}$ is the one used in proof of the former theorem. Then we can show as before that

$$E_{\mathit{KV}}(f) = \bigcup_{n, m, k, p} A_{n, m, k, p},$$

which shows E_{KV} is $G_{\delta\sigma}$. To see that $A = A_{n,m,k,p}$ is of porosity (1/2), we take G as the upper half plane, Γ as the real axis, and ζ as the origin. Then ∂K is the circle $x^2 + y^2 = 2\rho y$, writing ρ instead of $1 - \rho_p$.

Let $M=\bigcup_{\xi\in A}V_{m,k}(\xi)$. Suppose there exists a sequence $z_{\nu}=x_{\nu}+iy_{\nu}\to 0$, $z_{\nu}\in K_p\setminus M$. Then the set A must omit intervals $\{I_{\nu}\}$, where I_{ν} is the intersection of an angle $\bar{V}^{(\nu)}=-V_{m,k}(0)+z_{\nu}=\{z\,;\,z=-Z+z_{\nu}\}$

 $Z \in V_{m,k}(0)$ with the real axis. $|I_{\nu}|$ (the length of I_{ν}) is $ay_{\nu} \ge \frac{1}{2}a\rho x_{\nu}^2$, where a is a constant depending on ρ_m and ρ_k . From this we can infer that if $z_{\nu} \in U_{\epsilon}(0)$, $r(0, \varepsilon) \ge bx_{\nu}^2$, where b is a constant. Thus we have

$$\overline{\lim}_{\varepsilon\to 0}\frac{1}{\varepsilon}(r(0,\varepsilon))^{\frac{1}{2}}>0,$$

and obtain a contradiction to the assumption that 0 is not a point of porosity (1/2) for A. Therefore, for $\varepsilon > 0$ small enough, $K_p(0) \cap U_{\epsilon}(0)$ is covered by the set M. If $z \in K_p \cap U_{\epsilon}$ there is a point $\xi \in A$, $z \in V_{m,k}(\xi)$, and w = f(z) lies at a distance $\geq r_n$ from D_n . Thus $C(0, K_p) \cap D_n = \phi$. This is absurd in view of the definition of $F_{n,p}$.

4. From the Theorems 1,2 and the Dolzhenko's theorem quoted in §2, we have

Theorem 3. For any arbitrary function f(z), there holds $C_{\mathfrak{A}}(\zeta, f) = C_{\mathfrak{D}}(\zeta, f)$ at every $\zeta \in \Gamma$ except on a set of porosity (1/2).

Remark. Let $u=h(t)\geq 0$, $t\geq 0$, be a continuous and increasing function. A set $E\subset \Gamma$ can be defined to be of porosity in the h(t)-measure at ζ if

$$\overline{\lim}_{\varepsilon\to 0}\frac{1}{\varepsilon}h(r(\zeta,\varepsilon))>0.$$

If $t=h^{-1}(u)$ is the inverse of h(t) and $\int_0^{} h^{-1}(u)u^{-2}du < \infty$, the set $\{z=re^{i\theta}\,;\, \theta < h(1-r)\}$ is a fine neighborhood of ζ [4]. We can show that the set $F=\{\zeta\,;\, C_{\mathfrak{A}}(\zeta,f)\setminus C_{\mathfrak{A}}(\zeta,f)\neq \phi\}$ is of σ -porosity in the h(t)-measure, where h(t) satisfies the above condition. Probably F would be characterized more precisely.

Theorem 4. There is a bounded holomorphic function f(z) for which $E_{KV}(f)$ is of measure 2π .

Proof. Fix an inscribed disk $K(1) = \{z; |z-\rho| < 1-\rho\}, 0 < \rho < 1$. There is a constant β such that an arc $\gamma = \{z = re^{i\theta}; \theta = \beta\sqrt{1-r}\}$ is contained in K(1). Choose t_n , $0 < t_n < 1$, $t_n \nearrow 1$ such that $\sum \sqrt{1-t_n} < \infty$. We define

$$f(z) = \prod \frac{z^{k_n} - t_n^{k_n}}{(t_n z)^{k_n} - 1},$$

where the integers k_n are determined by $k_n = [3\pi/\beta\sqrt{1-t_n}]+1$. This product converges since $\sum k_n(1-t_n) < \infty$. For every point $\zeta \in \Gamma$, $K(\zeta)$ contains an infinite number of zeros of f(z) and $C(\zeta, K, f)$ contains 0, but f(z) has angular limits of modulus 1 at almost every point of Γ . Thus $E_{KV}(f)$ is of measure 2π (and of σ -porosity (1/2)).

This gives by the way an example f(z) for which $E_{GV}(f)$ is of measure 2π .

5. Theorem 4 can be sharpened as follows.

Theorem 5. Let $E \subset \Gamma$ be a closed set of porosity (1/2). Then there is a bounded holomorphic function f(z) such that $E_{KV}(f) = E$.

Proof. E^c consists of a countable number of arcs $I_{\nu}=(\zeta'_{\nu},\zeta''_{\nu})$. Let $L(\zeta)=\partial K(\zeta)$ be an inscribed circle at $\zeta:L(\zeta)=\{z\,;\,|z-\rho\zeta|=1-\rho\}$. Except at most finite number of ν 's, $L(\zeta'_{\nu})\cap L(\zeta''_{\nu})\neq \phi$. Let $z'_{\nu,1}=z''_{\nu,1}$ be the one of intersection points of $L(\zeta'_{\nu})$ and $L(\zeta''_{\nu})$ which is nearer to Γ . For every n>1, $z'_{\nu,n}$ be the point on $L(\zeta'_{\nu})$ such that $(1-|z'_{\nu,n}|)/|\zeta'_{\nu}-z'_{\nu,n}|=\frac{1}{2}(1-|z'_{\nu,n-1}|)/|\zeta'_{\nu}-z'_{\nu,n-1}|$. The sequence $\{z''_{\nu,n}\}$ on $L(\zeta''_{\nu})$ is defined analogously.

Then $\sum_{\nu,n}(1-|z_{\nu,n}'|)+\sum_{\nu,n}(1-|z_{\nu,n}''|)<\infty$, whence the Blaschke product

$$f(z) = \prod \frac{\bar{z}_{\nu,\,n}'}{|z_{\nu,\,n}'|} \, \frac{z - z_{\nu,\,n}'}{1 - \bar{z}_{\nu,\,n}'z} \prod \frac{\bar{z}_{\nu,\,n}''}{|z_{\nu,\,n}'|} \, \frac{z - z_{\nu,\,n}''}{1 - \bar{z}_{\nu,\,n}''z}$$

converges and defines a bounded holomorphic function in G. Since for each $\zeta \in E$ $|\zeta - z'_{\nu,n}| \ge |\zeta'_{\nu} - z'_{\nu,n}|$ and $(1 - |z'_{\nu,1}|) / |\zeta'_{\nu} - z'_{\nu,1}| \le K |\zeta'_{\nu} - z'_{\nu,1}|$ for sufficiently large ν , where K is a constant, we have

$$\sum_{\mathbf{v},n} \frac{1-|z_{\mathbf{v},n}'|}{|\zeta-z_{\mathbf{v},n}'|} + \sum_{\mathbf{v},n} \frac{1-|z_{\mathbf{v},n}''|}{|\zeta-z_{\mathbf{v},n}'|} < \infty,$$

thus f(z) has an angular limit of modulus 1 at each point $\zeta \in E$ (Frostman [3]). But if $1 > \rho > \rho'$, $K'(\zeta)$ for $\zeta \in E$ contains an infinite number of points from $\{z'_{\nu,n}, z''_{\nu,n}\}_{\nu,n}$ because of the porosity (1/2) of E. Thus $C(\zeta, K') \ni 0$, and all $\zeta \in E$ belong to $E_{KV}(f)$.

Since $\zeta \in E^c$ is not a limit point of zeros of f(z), f(z) is continuous there. Hence at every $\zeta \in E^c$ $C(\zeta, V) = C(\zeta, K)$ and $\zeta \notin E_{KV}(f)$.

Theorem 6. If $E = \bigcup E^{(\mu)}$ where $E^{(\mu)}$ is closed and of porosity (1/2), there is a bounded holomorphic function f(z) for which $E_{KV}(f) \supset E$.

Proof. We can assume that $E^{(\mu)} \cap E^{(\nu)} = \phi$ if $\mu \neq \nu$. For, if not so, set $F^{(1)} = E^{(1)}$. Since $(E^{(1)})^C$ consists of a countable set of open arcs $\{I_k^{(1)}\}$, $E^{(2)} \setminus E^{(1)} = \bigcup_k (E^{(2)} \cap I_k^{(1)})$ and each $E^{(2)} \cap I_k^{(1)} = P_k^{(2)}$ is closed. As $(E^{(2)} \cup E^{(1)})^C$ is also a countable collection of open arcs, we see that $E^{(3)} \setminus (E^{(2)} \cup E^{(1)})$ can be written as a countable sum of closed sets $P_k^{(3)}$, pairwise disjoint. Repeating this indefinitely and renumbering $\{P_k^{(e)}\}$ as $\{F^{(\mu)}\}$, our assertion follows.

Corresponding to $E^{(\mu)}$ we construct a sequence of zeros $\{z_{\nu,n}^{(\mu)}\}$ and Blaschke product $f_{\mu}(z)$, as in Theorem 5. Set

$$f(z) = \sum_{i=1}^{n} 2^{-\mu} f_{ii}(z).$$

If $\zeta \in E_{\mu}$, all $f_{\nu}(z)$ ($\nu \neq \mu$) are continuous at ζ . Put $B = \sum 2^{-\kappa} f_{\kappa}(\zeta)$, $B_1 = B - f_{\mu}(\zeta)$, where $f_{\mu}(\zeta)$ is the angular limit of $f_{\mu}(z)$ at ζ . It is easily seen that $f(z) \to B$ as z approaches ζ angularly, but $f(z_{\nu,n}^{(\mu)}) \to B_1$ as $z_{\nu,n}^{(\mu)} \to \zeta$ in the inscribed disk $K'(\zeta)$ (used in Theorem 5). Thus $C(\zeta, V) = \{B\}$

- $\neq C(\zeta, K', f)$ and $\zeta \in E_{KV}(f)$.
 - 6. We state the following theorems without proofs.

Theorem 7. If $E = \bigcup E^{(\mu)}$, where $E^{(\mu)}$ is closed and of porosity, there is a bounded holomorphic function f(z) for which $E_{KK}(f) \supset E$.

Theorem 8. For any arbitrary function f(z), $E_{GK}(f)$ is F_{σ} and of the first category. E_{GK} may be of measure 2π even for bounded holomorphic f(z).

References

- [1] Dolzhenko, E. P.: Boundary properties of arbitrary functions (in Russian);
 Izvectya, Akad. Nauk SSSR, 31, 3-14 (1967).
 English translation: Math. of the USSR-IZVESTIJA, 1, 1-12 (1967).
- [2] Vessey, T. A.: Some properties of oricyclic cluster sets. J. d'Anal. Math., 21, 373-380 (1968).
- [3] Frostman, O.: Sur les produits de Blaschke. Kungl. Fysiogr. Sallsk. i Lund Forh., 12, Nr., 15, 169-182 (1942).
- [4] Brelot, M., and J. L. Doob: Limites angulaires et limites fines. Ann. Inst. Fourier, 13, 395-415 (1963).