217. Eine Verallgemeinerung des Begriffes der absolutp-summierenden Abbildung

Von Irmtraud STEPHANI Sektion Mathematik, Friedrich Schiller-Universität (Comm. by Kinjirô Kunugi, m. J. A., Nov. 12, 1970)

1. Nach Pietsch heißt eine lineare Abbildung T eines Banach-Raumes E in einen Banach-Raum F absolut-p-summierend, wenn es eine Zahl $\rho > 0$ gibt, so daß für jedes endliche System x_1, x_2, \cdots, x_n von Elementen aus E die Ungleichung

(1.1)
$$\sum_{i=1}^{n} \|Tx_i\|^p \leq \rho^p \cdot \sup_{\|a\| \leq 1} \sum_{i=1}^{n} |\langle x_i, a \rangle|^p$$

besteht. Gleichbedeutend damit ist die Existenz eines normierten positiven Radonschen Maßes μ auf der schwach kompackten Einheitskugel U^0 des dualen Banach-Raumes E' von E, das für $\|Tx\|$ die Abschätzung

(1.2)
$$||Tx||^p \le \rho^p \int_{U_0} |\langle x, a \rangle|^p \, d\mu$$

leistet (vgl. [5]).

In ihrer Arbeit "On classes of Summing Operators. I" (vgl. [1]) ersetzen Craiu und Isträţescu die Potenzfunktion $\phi(t)=t^p$, auf die sich für $p\geq 1$ der Begriff der absoluten p-Summierbarkeit gründet, durch eine N-Funktion im Sinne von Krasnoselskii-Rutizkii (vgl. [2]). Allerdings wird $\phi(t)$ nicht als eine beliebige N-Funktion vorausgesetzt, sondern gewissen zusätzlichen Bedingungen unterworfen. In der vorliegenden Arbeit soll demgegenüber ein $Verfahren\ zur\ Verallgemeinerung\ des\ Begriffes\ der\ absoluten\ p-Summierbarkeit\ aufgezeigt\ werden, das nicht auf derartige einschränkende\ Bedingungen\ für\ <math>\phi(t)$ angewiesen ist, sondern sogar eine umfassendere Funktionenklasse als die Klasse der N-Funktion zuläßt.

2. Es sei $\phi(t)$ eine konvexe φ -Function im Sinne von Orlicz (vgl. [3], [4]), d.h. eine für $t \ge 0$ definierte stetige, monoton wachsende und konvexe funktion mit $\phi(0)=0$. Eine lineare Abbildung T eines Banach-Raumes E in einen Banach-Raum F soll dann eine Abbildung vom Typ A_{φ} genannt werden, wenn mit einer festen Zahl $\rho > 0$ für jedes endliche System x_1, x_2, \dots, x_n von Elementen aus E und von positiven Zahlen $\sigma_1, \sigma_2, \dots, \sigma_n$ die Ungleichung

(2.1)
$$\sum_{i=1}^{n} \sigma_{i} \phi\left(\frac{\|Tx_{i}\|}{\rho}\right) \leq \sup_{\|a\| \leq 1} \sum_{i=1}^{n} \sigma_{i} \phi(|\langle x_{i}, a \rangle|)$$

besteht. Die so definierte Operatorenklasse A_{ϕ} erweist sich als ein

Operatorenideal (vgl. [6], [7], [8]). Das bedeutet im einzelnen:

Für je zwei Banach-Räume E und F ist $A_{\phi}(E,F)$ ein linearer

(A₁) Teilraum des Raumes L(E,F) aller linearen stetigen Abbildungen von E in F, und es gibt mindestens ein Paar \tilde{E},\tilde{F} , so daß $A_{\phi}(\tilde{E},\tilde{F})$ eine Transformation \tilde{T}_0 mit $\tilde{T}_0 \neq 0$ enthält.

In der Tat läßt sich für die Summe T_1+T_2 zweier Abbildungen T_1 und T_2 aus $A_{\phi}(E,F)$ mit Hilfe der entsprechenden Konstanten ρ_1 and ρ_2 folgende Abschätzung durchführen:

$$\begin{split} &\sum_{i=1}^n \sigma_i \phi\left(\frac{\|(T_1+T_2)x_i\|}{\rho_1+\rho_2}\right) \\ &\leq \frac{\rho_1}{\rho_1+\rho_2} \sum_{i=1}^n \rho_i \phi\left(\frac{\|T_1x_i\|}{\rho_1}\right) + \frac{\rho_2}{\rho_1+\rho_2} \sum_{i=1}^n \sigma_i \phi\left(\frac{\|T_2x_i\|}{\rho_2}\right) \\ &\leq \sup_{\|a\|\leq 1} \sum_{i=1}^n \sigma_i \phi(|\langle x_i,a\rangle|). \end{split}$$

Daraus geht $T_1+T_2\in A_{\phi}(E,F)$ hervor. Mit T gehört für beliebige Skalare λ auch λT zu $A_{\phi}(E,F)$; man kann dabei statt der Konstanten ρ die Konstante $|\lambda|\cdot \rho$ verwenden. Schließlich genügt jede eindimensionale Abbildung

$$Tx = \langle x, a_0 \rangle y_0$$

der Ungleichung (2.1) mit $\rho = ||a_0|| \cdot ||y_0||$.

- (A₂) a) Aus $T \in A_{\phi}(E, F)$ und $R \in L(F, G)$ folgt $RT \in A_{\phi}(E, G)$.
 - b) Aus $T \in A_{\delta}(F,G)$ und $R \in L(E,F)$ folgt $TR \in A_{\delta}(E,G)$.

Für die Eigenschaft (A₂) a) ist die Abschätzung

$$||RTx_i|| \le ||R|| \cdot ||Tx_i||$$

und der Übergang von ρ zu $||R|| \cdot \rho$ maßgebend. Die Prüfung der Eigenschaft (A₂) b) vollzieht sich so:

$$\begin{split} &\sum_{i=1}^n \sigma_i \phi\left(\frac{\|TRx_i\|}{\|R\| \cdot \rho}\right) \leq \sup_{\|b\| \leq 1} \sum_{i=1}^n \sigma_i \phi\left(\left|\left\langle\frac{Rx_i}{\|R\|}, b\right\rangle\right|\right) \\ &= \sup_{\|b\| \leq 1} \sum_{i=1}^n \sigma_i \phi\left(\left|\left\langle x_i, \frac{R'b}{\|R\|}\right\rangle\right|\right) \leq \sup_{\|a\| \leq 1} \sum_{i=1}^n \sigma_i \phi(\left|\left\langle x_i, a\right\rangle\right|). \end{split}$$

Aus der Beweisführung zu (A1) ergibt sich, daß durch die Festsetzung

$$\boldsymbol{\alpha}_{\phi}(T) = \inf \left\{ \rho > 0 : \sum_{i=1}^{n} \sigma_{i} \phi \left(\frac{\|Tx_{i}\|}{\rho} \right) \leq \sup_{\|a\| \leq 1} \sum_{i=1}^{n} \sigma_{i} \phi (|\langle x_{i}, a \rangle|) \right\}$$

auf dem linearen Raum $A_{\phi}(E,F)$ jeweils eine Norm bestimmt wird. Hinzuzufügen ist lediglich der Sachverhalt—

$$\boldsymbol{\alpha}_{\phi}(T) = 0$$
 nur im Falle $T = 0$ —,

der auf dem Wege über

$$\phi\left(\frac{\|Tx\|}{\boldsymbol{a}_{\boldsymbol{a}}(T)}\right) \leq \sup_{\|a\| \leq 1} \phi(|\langle x, a \rangle|) = \phi(\|x\|)$$

aus der Ungleichung

$$||T|| \leq \boldsymbol{\alpha}_{\phi}(T)$$

resultiert. Die Bemerkungen zum Beweis von (A2) a) und (A2) b) las-

sen weiter erkennen

(N) a)
$$\boldsymbol{\alpha}_{\phi}(RT) \leq ||R|| \cdot \boldsymbol{\alpha}_{\phi}(T)$$
 für $T \in A_{\phi}(E, F)$ und $R \in L(F, G)$.
b) $\boldsymbol{\alpha}_{\phi}(TR) \leq ||R|| \cdot \boldsymbol{\alpha}_{\phi}(T)$ für $T \in A_{\phi}(F, G)$ und $R \in L(E, F)$.

Es ist also α_{ϕ} eine sog. *Idealnorm* auf A_{ϕ} (vgl. [6]–[8]). Die einzelnen Komponenten $A_{\phi}(E,F)$ sind im übrigen *vollständig* bzgl. α_{ϕ} . Sei dazu T_k eine beliebige α_{ϕ} - Cauchy - Folge in $A_{\phi}(E,F)$, also

$$\boldsymbol{\alpha}_{\scriptscriptstyle A}(T_{\scriptscriptstyle k}-T_{\scriptscriptstyle 1}) \leq \varepsilon$$
 für $k, 1 \geq K(\varepsilon)$

mit einem hinreichend großen $K(\varepsilon)$. Dann gilt

(2.2)
$$\sum_{i=1}^{n} \sigma_{i} \phi \left(\frac{\|T_{k} - T_{1})x_{i}\|}{\varepsilon} \right) \leq \sup_{\|a\| \leq 1} \sum_{i=1}^{n} \sigma_{i} \phi(|\langle x_{i}, a \rangle|)$$

für $k, 1 \ge K(\varepsilon)$. Wegen

$$||T_k-T_1|| \leq \boldsymbol{\alpha}_{\phi}(T_k-T_1)$$

ist T_k aber auch eine Cauchy-Folge in L(E,F) bzgl. der gewöhnlichen Operatorennorm. Daher existiert eine Abbildung T aus L(E,F) mit

$$\lim_{k\to\infty} ||T_k - T|| = 0.$$

Führt man unter dem links stehenden Summenzeichen von (2.2) jetzt den Grenzübergang $1\rightarrow\infty$ aus und berücksichtigt die Stetigkeit der Funktion $\phi(t)$, so erhält

$$\textstyle\sum_{i=1}^n \sigma_i \phi\left(\frac{\|(T_k-T)x_i\|}{\varepsilon}\right) \leq \sup_{\|a\| \leq 1} \sum_{i=1}^n \sigma_i \phi(|\langle x_i,a\rangle|).$$

Von hier aus kann man auf $T_k - T \in A_{\phi}(E, F)$ und

$$a_{\phi}(T_k - T) \leq \varepsilon$$
 für $k \geq K(\varepsilon)$

schließen, d.h. man erkennt T als $\boldsymbol{\alpha}_{\phi}$ -Limes der $\boldsymbol{\alpha}_{\phi}$ - Cauchy - Folge T_k in $A_{\phi}(E,F)$.

3. Sei $C(U^0)$ der Banach-Raum der stetigen Funktionen auf der Einheitskugel U^0 des dualen Raumes E' von E bzgl. der schwachen Topologie von E'. Durch den Ansatz

$$s_T(\varphi) = \inf_{x_i \in E} \inf_{\sigma_i > 0} \left\{ \sup_{\|a\| \le 1} \left[\varphi(a) + \sum_{i=1}^n \sigma_i \phi(|\langle x_i, a \rangle|) \right] - \sum_{i=1}^n \sigma_i \phi\left(\frac{\|Tx_i\|}{\rho}\right) \right\}$$

wird für eine beliebige Abbildung T aus $A_{\phi}(E,F)$ ein Funktional auf $C(U^0)$ definiert, das zwischen den Schranken

$$\inf_{a \in U^0} \varphi(a) \leq s_T(\varphi) = \sup_{a \in U^0} \varphi(a)$$

liegt. $s_T(\varphi)$ ist positiv—homogen; dafür sorgt die Infimumsbildung über die positiven Koeffizienten σ_i . Darüber hinaus ist $s_T(\varphi)$ subadditiv. Es läßt sich nämlich $s_T(\varphi + \psi)$ durch

$$(3.1) \begin{array}{c} s_{T}(\varphi + \psi) \leq \left\{ \sup_{\|a\| \leq 1} \left[\varphi(a) + \sum_{i=1}^{n} \sigma_{i} \phi(|\langle x_{i}, a \rangle|) \right] - \sum_{i=1}^{n} \sigma_{i} \phi\left(\frac{\|Tx_{i}\|}{\rho}\right) \right\} \\ + \left\{ \sup_{\|a\| \leq 1} \left[\psi(a) + \sum_{i=1}^{n} \tau_{i} \phi(|\langle z_{i}, a \rangle|) \right] - \sum_{i=1}^{n} \tau_{i} \phi\left(\frac{\|Tz_{i}\|}{\rho}\right) \right\} \end{array}$$

mit beliebigen Elementsystemen $x_1, x_2, \dots, x_n, z_1, z_2, \dots, z_m$ aus E und beliebigen positiven Zahlen $\sigma_1, \sigma_2, \dots, \sigma_n, \tau_1, \tau_2, \dots, \tau_m$ abschätzen. Auf

der rechten Seite von (3.1) kann sodann das Infimum über die Elementsysteme x_1, x_2, \dots, x_n und die $\sigma_1, \sigma_2, \dots, \sigma_n$ und unabhängig davon über die Elementsysteme z_1, z_2, \dots, z_m und die $\tau_1, \tau_2, \dots, \tau_m$ gebildet werden. So kommt

$$s_T(\varphi + \psi) \leq s_T(\varphi) + s_T(\psi)$$

zustande, wie gewünscht. Nach dem verallgemeinerten Hahn-Banach-Theorem existiert daher eine Linearform μ über $C(U^0)$ mit

$$\langle \varphi, \mu \rangle \leq s_T(\varphi)$$
 für alle $\varphi \in C(U^0)$.

Für eine Funktion $\varphi \ge 0$ aus $C(U^0)$ gilt wegen

$$s_T(-\varphi) \leq \sup_{a \in U^0} [-\varphi(a)] \leq 0$$

offensichtlich

$$\langle -\varphi, \mu \rangle \leq 0$$
 bzw. $\langle \varphi, \mu \rangle \geq 0$,

d.h. μ ist positiv und somit stetig. Im übrigen hat man (3.2) $\langle 1, \mu \rangle \leq s_T(1) \leq 1$.

Die zu $C(U^0)$ gehörige Funktion $\varphi(a) = -\phi(|\langle x, a \rangle|)$ unterliegt wegen

$$s_{T}(\varphi) \leq \sup_{\|a\| \leq 1} \left[\varphi(a) + \phi(|\langle x, a \rangle|) \right] - \phi\left(\frac{\|Tx\|}{\rho}\right)$$

speziell der Abschätzung

$$s_T(-\phi(|\langle x,a\rangle|)) \leq -\phi\left(\frac{||Tx||}{\rho}\right)$$

also auch der Abschätzung

$$\langle -\phi(|\langle x,a\rangle|),\mu\rangle \leq -\phi\left(\frac{||Tx||}{\rho}\right).$$

Bei Verwendung der Integralschreiweise für die positive Linearform μ über $C(U^0)$ ist das gleichbedeutend mit

(3.3)
$$\phi\left(\frac{\|Tx\|}{a}\right) \leq \int_{U_0} \phi(|\langle x, a \rangle|) d\mu.$$

Schreibt man (3.3) jetzt für ein beliebiges n-tupel x_1, x_2, \dots, x_n von Elementen aus E auf, so gewinnt man nach Multiplikation mit beliebigen positiven Koeffizienten σ_i und nach summation über i die Aussage

$$\sum_{i=1}^n \sigma_i \phi\left(\frac{\|Tx_i\|}{\rho}\right) \leq \int_{U^0} \sum_{i=1}^n \sigma_i \phi(|\langle x_i, a \rangle|) d\mu,$$

die in Verbindung mit (3.2) schließlich zu (2.1) zurückführt.

4. Die Abbildungen vom Typ A_{ϕ} lassen sich also durch eine $Inte-gralabsh\"{a}tzung$ (3.3) characterisieren, die für $\phi(t)=t^p$ gerade mit der Integralabsch\"{a}tzung (1.2) der absolut-p-summierenden Abbildungen zusammenf\"{a}llt. Nicht so ohne weiteres scheinen sich jedoch diejenigen Resultate aus der Theorie der absolut-p-summierenden Abbildungen auf Abbildungen vom Typ A_{ϕ} verallgemeinern zu lassen, die mit den Funktionenr\"{a}umen $L_p(K,\mu)$ zusammenh\"{a}ngen. Selbst wenn man sich auf die Betrachtung von N-Funktionen beschr\"{a}nkt, wie sie der Theorie der Orlicz-R\"{a}ume zugrundeliegen, bleiben die gewünschten Ergebnisse

aus.

5. Jedes Operatorenideal A_{ϕ} umfaßt das $Ideal \ \pi_1 \ der \ absolut$ -1- $summierenden \ Abbildungen$. Ist nämlich $T \in \pi_1(E,F)$, so existiert ein positives normiertes Maß μ auf U^0 , das mit einer geeigneten Konstanten $\rho > 0$ für $\|Tx\|$ die Abschätzung

$$\frac{\|Tx\|}{\rho} \leq \int_{U^0} |\langle x, a \rangle| \, d\mu$$

leistet. Daraus folgt unmittelbar

$$\phi\!\left(\!\!\begin{array}{c} \parallel\!Tx\!\parallel\\ \rho \end{array}\!\!\right)\!\leq\!\phi\!\left(\!\!\int_{\scriptscriptstyle U^{\scriptscriptstyle 0}}\!\!\mid\!\langle x,a\rangle\!\mid\!d\mu\right)\!.$$

Nach der Jensenschen Ungleichung aber kann wegen

$$\int_{U^0} 1d\mu = 1$$

weiter auf

(3.3)
$$\phi\left(\frac{\|Tx\|}{\rho}\right) \leq \int_{U_0} \phi(|\langle x, a \rangle|) d\mu$$

geschlossen werden, womit $T \in A_{\delta}(E, F)$ gezeigt ist.

Literatur

- [1] V. Craiu and V. Istrţaescu: On classes of Summing Operators. I. Proc. Japan Acad., 45, 380-382 (1969).
- [2] M. A. Krasnoselskii und J. B. Rutizkii: Konvexe Funktionen und Orlicz— Räume. Moskau (1958).
- [3] W. Orlicz: On the Convergence of Norms in Spaces of φ -integrable Functions. Bull. de l'Académie Polonaise des Sciences. Série des sciences math., astr. et phys., Vol. XIII, No. 3, 205–210 (1965).
- [4] —: On some classes of modular spaces. Studia Mathematica, 26, 165–192 (1966).
- [5] A. Pietsch: Absolut-p-summierende Abbildungen in normierten Räumen. Studia Mathematica, **28**, 333-353 (1967).
- [6] A. Pietsch and H. Triebel: Interpolationstheorie für Banachideale von beschränkten linearen Operatoren. Studia Mathematica, 31, 95-109 (1968).
- [7] I. Stephani: Injektive Operatorenideale über der Gesamtheit aller Banach-Räume und ihre topologische Erzeugung. Studia Mathematica. XXXVIII Räume und ihre topologische Erzeugung. Studia Mathematica, 38 (im Druck).
- [8] —: Surjektive Operatorenideale über der Gesamtheit aller Banach-Räume. Wissenschaftliche Zeitschrift der Friedrich-Schiller-Universität Jena, math. naturw. Reihe (im Druck).