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1. Recently N. Dinculeanu and C. Foias [21 introduced the concept
of algebraic models for probability measures in their researches on

conjugacy o measure preserving transformations.
Since the theory of von Neumann algebras is recognized as a non-

commutative extension of the measure theory, we can expect that the
theory of Dinculeanu and Foias has an analogue or von Neumann
algebras. In the present note, we shall engage in this direction.

2. Let (F, ) be a pair of a group F and a complex function (f of
positive type defined on F. Then we shall call (F, ) a measure system
provided that (y)=l if and only if y=l. Especially, in case that F
is abelian, our notion coincides with that of Dinculeanu-Foias. Two
measure systems (F, (?) and (Ft, pt) are said to be isomorphic if there
exists an isomorphism b of F onto F such that (-)= (f’(;) for 9 in F.

Now we shall introduce the notion o an algebraic model for avon
Neumann algebra which is a modification o that of Dinculeanu-Foia

Definition 1. Let A be a yon Neumann algebra acting on a
Hilbert space with a generating vector x. A measure system (F, (f)
is an algebraic model for A, if there exists an isomorphism J of F into
the unitary group of such that

( JF generates A,
and

ii (f(;)= (Jx]x), or 9 in F.
It is clear that the unitary group F() itsel is an algebraic model

for / if x is separating.
Let us suppose that (F, ) is a measure system. Since is positive

definite, the theorem o Gelfand and Raikov (cf. [3;p. 393]) gives a
unitary representation z of F on a Hilbert space induced by such
that
1 (f(7")--((7")l )
or every 9 in F, where is a generating vector or z(F). Since

q()-I if and only if -1, ;r is an injective map. In fact, if

zr()= u() or ;’, . e F, then zr(;)= I, so that (1;)= 1 by (1) or

=. Let (F,) denote the von Neumann algebra generated by

{TV(;)[; e F}. Then we have the ollowing theorem:
Theorem 1. Let A be a yon Neumann algebra acting on with
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a cyclic vector. If (F, ) is an algebraic model for , then is
spatially isomorphic to (F, ).

Proof. Since (F, ) is an algebraic model for , there exist an
isomorphism J of F into F() and a separating and generating unit
vector x in satisfying (i) and (ii) of Definition 1. Put
( 2 ) V[()]-J()x, (y e F).
Then it is easy to observe that V is an isometry of {(y)$ ]y e F} onto
{J(y)x]y e F}. Next we define

V[a()+fl()]-aJ()x+ flJ()x,
or y,ye F and a, fl e C, where C is the complex number field.
Then V is well-defined on the linear span of {(y)$]y e F}. Since

aJ()x+ J()xl

aI(1) +()+a()+1(1)
a I(=()$ $) + 5((;1)$ $) +a(=()$ )+ (=()$ )
a()$+=()$ ,

V is an isometry from the linear span of {(y)$ y e F} onto the linear
span of {J()xly e F}. Since $ and x are cyclic vectors for (F) and

respectively, and since J(F) (which contains the unit element of )
generates , V can be uniquely extended to an isometry of @ onto ,
which is also denoted by V.

For any fixed y e F and every e F, we have
V()V-J()x V()()-Vz()=J()x-J()J()x.

Since x is cyclic for and J(F) generates , we have
( 3 ) v(y)v-= J(y),
for any e F. Hence we have by (3),

(4) uaz()y--
i=1 i=1

for e F and a e C(lin).
Since A e (F, ) is the weak limit of some net {A}, where

(a) (a)A- E =( ),
i=1

for some )e F and ) e C (lin), and VAV- converges weakly
to VAV-1,

(A VAV-gives a spatial isomorphism of (F, ) onto .
By Theorem 1, we can obtain a non-abelian extension of the

theorem of Dinculeanu and Foias"
Theorem 2. Let and be yon Neumann algebras acting on

and with a generating vector respectively. Suppose that (F, ) and
(F, ’) be algebraic models for and espectively. If (F, ) and
(F’, ’) are isomorphic, then and are spatially isomorphic.

Proof. By Theorem 1, we have that and are spatially
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isomorphic with -(F, ) and Z(F’, (p’) respectively. By the hypothesis,
there exists an isomorphism of F and F’ such that

(,)=’(0,), for e r.
Therefore,
( 5 (() 1)=(’(’)’ ’), , e r,
where and ’ are injective unitary representations of F and F’ respec-
tively and $ and ’ are cyclic unit vectors for and ’ respectively.
Using (5), as same as the proof o Theorem 1, we can prove that y
(F, ) and (F’, ’) are spatially isomorphic. Hence by Theorem 1 y
and are spatially isomorphic.

3. Now we shall discuss the abelian case. Let (X,X,/2) be a
probability space. We shall denote by F(/2) the set of all functions f
in L(/2) with fl=l. The ollowing definition is due to Dinculeanu
and Foias

Definition 2. A measure system (F, ) is said to be an algebraic
model for a measure/ if there exists an isomorphism J of F into F(/)
such that

(a) J(F) spans L(g),
and

(b) ()-.[Jd/, for each e F.

It is well known that L(/) is a maximal abelian von Neumann
algebra acting on L2(/), and the identity function i in L2(/) is a gen-
erating and separating vector for L(/). It is evident F(Z)= F(L(t)).
If (F, ) is an algebraic model for/, there exists an isomorphism J of
F into F(/) satisfying (a) and (b) of Definition 2. Since (a) implies
that J(F) generates L(/), and (b) implies

(’)= (J()l 1), for " e F,
it is shown that (F, ) is an algebraic model for L(/) in the sense of
Definition 1. By Theorem 2, we have the following theorem"

Theorem 3 (Dinculeanu:Foia). Let (F, ) and (F’, ’) be alge-
braic models for measures l and ,u’ respectively. If (F, 9) and (F’, ’)
are isomorphic, then L(/) and L(l’) are spatially isomorphic.
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