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Let G be an abelian group. An affine transformation S of G is a
transformation of G onto itself of the form S(x)-a+ T(x), where a e G
and T is an automorphism o G. In case G is a locally compact non-
discrete topological group, it has been proved (cf. [1], [2], [3] and [4])
that if there exists a continuous affine transformation S o G which
has a dense orbit then G is compact. In the present paper we shall
study the structure of a discrete abelian group G which is covered by
an orbit under an affine transformation S.

1. Theorems.
From now on, for simplicity, we say that an affine transformation

S of G satisfies property i {Sn(w);n=O, + 1, +2,...}-G or some

Theorem 1. Let G be an infinite abelian group. If G has an affine
transformation S(x)-a+ T(x) satisfying property then G is isomor-
phic with the additive group Z of the integers, a is a generator, and T
is the identity transformation.

Theorem 2. Let G be a finite abelian group with order r. If 4
does not divide r, and G has an affine transformation S(x)-a+ T(x)
satisfying property then G is isomorphic with the cyclic group Z(r)
of order r, and a is a generator.

2. Proof of Theorem 1.
Lemma 1. If G has an affine transformation S(x)-a+ T(x) satis-

fying property then G is finitely generated.
Proof. Since {Sn(0) n=0, +__ 1, 2, }-- {Sn(w) n--0, _+ 1, 2,

..}=G, T(a)-S(O)for some integer k. If k-0 (resp. 1, or 2) then
it is easy to check that G-{0} (resp. G-{na;n=O, +1, +_2,...}, or
G-(0}). If k>_ 3, we see that T(a) is in the subgroup H generated by
{a, T(a), ..., T-(a)}. It follows at once that

a e T(H)cH,
and hence T(H)=H, and S(H)-H. This clearly assures that G=H,
the required conclusion. A similar argument also applies in the case
k0, and so G is finitely generated.

Lemma 2. If the additive group ZP(p 1) has an affine transfor-
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marion S(x)=a+ T(x) satisfying property then p=l, a is a genera-
tor, and T is the identity transformation.

Proof. The automorphism T of Z may be extended in a natural
ashion to a linear transformation of the p-dimensional complex eucli-
dean space C. Then from the matrix theory, T can be represented
by a triangular matrix under some suitable basis {e, e,..., %} of C:

Let a-ae+m.e+... +ae, where a:0.
if n>=l,

and

It is easy to observe that

Sn(O)- *e+ + .e_+ (1+2+ +,r-l)e

Sn(O) *et + + .e_+ (- 1)a(2; + 2;" + + 2-;)e
Case I. If 2r=/= 1 then

S(0) .e + + ,e_ + a 1- e,

for n-0, _+ 1, _+ 2, .... Since nS(O)-.e+ + .er_ / no:e e Z’, and
S satisfies property 3/, it follows that

{na; n-O, +1, +2,...} a 1"2 ;n=0, _+1, _+2,....

This is obviously impossible.
Case II. If 2-1 then

S(O)- .e +. + .e_+ne
for n-0, _+1, _+2,.... It follows at once that Sn(O)--tS(O), and so
a= S(0) is a generator. The lemma now is clear.

We are now in a position to accomplish the proof of Theorem 1. By
Lemma 1, G-ZF, where F is a finite abelian group. If we define
an affine transformation S* of G/F=Z by

S*(x + F) S(x) + F,
S* satisfies property , whence it follows from Lemma 2 that p= 1,
i.e., G-ZF, which is possible only if F={0}. This establishes
Theorem 1.

3. Proof of Theorem 2.
Lemma 3. Let G be a finite abelian group with order r>__2, and

S(x)-a+ T(x) an affine transformation of G satisfying property .
Then the subgroup H-{x e G T(x)-x} is a non-trivial cyclic subgroup
generated by x0=a+ T(a)+ + T-(a), where k denotes the period of
a under T. Moreover if p denotes the order of xo then r-pk.

Proof. In case T(a)=a, the lemma is clear, so we study the case
T(a) g: a. Since k <r, we see that Xo a+ T(a) +. + T-l(a) :/: 0. Let
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n=ik+], where O_ip and O]k. Then
S’(O)=iXo+(a+ T(a)+ + T-(a)).

Therefore
T(Sn(O))-Sn(O)= T(a)-a:/=O,

from which H={x0, 2x0,..., pXo} and r=pk.

Lemma 4. Let G be a finite abelian group with order r which has
an ayne transformation S(x)-a+ T(x) satisfying property , and let
H-(x e G; T(x)-x}. If 4 does not divide r, and G/H is cyclic then G
is cyclic and a is a generator.

Proof. The.proof proceeds by induction on r. If r<=3, the lemma
is clear. Now suppose that if l<_sr, and 4 does not divide s then
the lemma is true.

If T(a)--a, the proof is trivial, and so we suppose that T(a)=a.
Let k be the period of a under T and p the order o x0=a+ T(a)+...
/ T-(a). Define an affine transformation S* of G/H as ollows"

S*(x+ H)- S(x) + H.
Since S* has property /, the order of a+H e G/H is the greatest in
the orders of the elements in the cyclic G/H, whence a+H generates
G/H. Clearly G is generated by {a, x0}, and so there exist two positive
integers m and n such that m devides n, and G=Z(m)Z(n), where
Z(m), Z(n) denote cyclic groups of order m, n, respectively. An ele-
mentary calculation shows that the order o a equals n.

I ka-0 then the order o a equals/c by virtue o Lemma 3, and so
G is isomorphic with the direct product group HH, where H denotes
the cyclic group generated by a. Hence G-Z(p)Z(k). Let T(a)-2Xo
//a. Then an easy calculation shows that

S(0)- (1+ (1 +/) +... + (1 +/ +... + #-2))x
+ (1 +/ + + -)a=xoO.

From the property of S* of G/H--Z(k) it ollows that
l+(l+u)+... +(l+u+... +u-2)-1+2+... +(k--l)

(mod k). Let k= hp. Then the above relation holds only if p-2, and
so r-4h, which contradicts the hypothesis that 4 does not divide r.
Thus kaO. Let ka-tXo e H, where 0$p.

In case t, p are relatively prime, it ollows easily that the order of
a equals r=pk, whence a is a generator. In case t, p are not relatively
prime, let q be the order of ka-txo. Then the order of a equals qk, and
so r-pk=(p/q)qk-(p/q)n-mn. Therefore p=qmm. Let x0

(a, ) e Z(m)Z(n)- G. Then mXo- (0, m)= (0, 0). If H denotes
the subgroup generated by mXo then clearly G/H is not cyclic. How-
ever from the construction of H, G/H. has an affine transformation
satisfying property , which contradicts the hypothesis of induction.

By virtue of the above two lemmas, the proof of Theorem 2 is now
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easy. It proceeds by induction on r. If 1Nf_<_3, the theorem is clear.
Now suppose that if 1 =<s <r and 4 does not divide s, then the theorem
is true.

In case T(a)=a, the proo is trivial, and so we suppose that T(a)
Ca. In this case, the subgroup H={x e G;T(x)-x} is a non-trivial
cyclic subgroup by virtue of Lmma 3. By the hypothesis of induction,
G/H is cyclic, whence by Lemma 4, G is cyclic and a is a generator.
The proof is completed.

4. Counter.examples.
1) In Theorem 2, the hypothesis that 4 does no divide r is not

omitted. In fact, let G be the direct product group Z(2)@Z(2n) of
cyclic groups with orders 2 and 2n, respectively, where n is an odd in-
teger. Define an affine transformation S o G by

S(x, y)- (0, ) + (x + y, y)
It is easy to check that S satisfies property . But obviously G is not
cyclic.

2) There exists an affine transformation S(x)-a/ T(x) satisfying
property , but T is not the identity transformation. To see this, let
G be the cyclic group Z(16) of order 16, and define an affine transfor-
mation S o G as ollows" S(x)--1 +5x. A routine calculation shows
that S satisfies property , but T(x)--5x is not the identity transfor-
mation.
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