38. Properties of Ergodic Affine Transformations of Locally Compact Groups. III

By Ryotaro SATO

Department of Mathematics, Josai University, Saitama (Comm. by Kinjirô Kunugi, M. J. A., Feb. 12, 1971)

Let G be an abelian group. An affine transformation S of G is a transformation of G onto itself of the form S(x) = a + T(x), where $a \in G$ and G is an automorphism of G. In case G is a locally compact non-discrete topological group, it has been proved (cf. [1], [2], [3] and [4]) that if there exists a continuous affine transformation G of G which has a dense orbit then G is compact. In the present paper we shall study the structure of a discrete abelian group G which is covered by an orbit under an affine transformation G.

1. Theorems.

From now on, for simplicity, we say that an affine transformation S of G satisfies property \mathcal{A} if $\{S^n(w); n=0, \pm 1, \pm 2, \cdots\} = G$ for some $w \in G$.

Theorem 1. Let G be an infinite abelian group. If G has an affine transformation S(x) = a + T(x) satisfying property \mathcal{A} then G is isomorphic with the additive group Z of the integers, a is a generator, and T is the identity transformation.

Theorem 2. Let G be a finite abelian group with order r. If 4 does not divide r, and G has an affine transformation S(x)=a+T(x) satisfying property \mathcal{A} then G is isomorphic with the cyclic group Z(r) of order r, and a is a generator.

2. Proof of Theorem 1.

Lemma 1. If G has an affine transformation S(x) = a + T(x) satisfying property \mathcal{A} then G is finitely generated.

Proof. Since $\{S^n(0); n=0, \pm 1, \pm 2, \cdots\} = \{S^n(w); n=0, \pm 1, \pm 2, \cdots\} = G$, $T(a) = S^k(0)$ for some integer k. If k=0 (resp. 1, or 2) then it is easy to check that $G = \{0\}$ (resp. $G = \{na; n=0, \pm 1, \pm 2, \cdots\}$, or $G = \{0\}$). If $k \ge 3$, we see that $T^k(a)$ is in the subgroup H generated by $\{a, T(a), \cdots, T^{k-1}(a)\}$. It follows at once that

$$a \in T(H) \subset H$$
,

and hence T(H)=H, and S(H)=H. This clearly assures that G=H, the required conclusion. A similar argument also applies in the case k<0, and so G is finitely generated.

Lemma 2. If the additive group $Z^p(p \ge 1)$ has an affine transfor-

mation S(x)=a+T(x) satisfying property \mathcal{A} then p=1, a is a generator, and T is the identity transformation.

Proof. The automorphism T of Z^p may be extended in a natural fashion to a linear transformation of the p-dimensional complex euclidean space C^p . Then from the matrix theory, T can be represented by a triangular matrix under some suitable basis $\{e_1, e_2, \dots, e_p\}$ of C^p :

$$T = \begin{pmatrix} \lambda_1 & & * \\ & \lambda_2 & & * \\ & & \ddots & \\ & & & \lambda_p \end{pmatrix}$$

Let $a = \alpha_1 e_1 + \alpha_2 e_2 + \cdots + \alpha_r e_r$, where $\alpha_r \neq 0$. It is easy to observe that if $n \geq 1$,

$$S^{n}(0) = *e_{1} + \cdots + *e_{r-1} + \alpha_{r}(1 + \lambda_{r} + \cdots + \lambda_{r}^{n-1})e_{r}$$

and

$$S^{n}(0) = *e_{1} + \cdots + *e_{r-1} + (-1)\alpha_{r}(\lambda_{r}^{-1} + \lambda_{r}^{-2} + \cdots + \lambda_{r}^{-n})e_{r}$$

Case I. If $\lambda_r \neq 1$ then

$$S^{n}(0) = *e_{1} + \cdots + *e_{r-1} + \alpha_{r} \frac{1 - \lambda_{r}^{n}}{1 - \lambda_{r}} e_{r},$$

for $n=0, \pm 1, \pm 2, \cdots$. Since $nS(0) = *e_1 + \cdots + *e_{r-1} + n\alpha_r e_r \in \mathbb{Z}^p$, and S satisfies property \mathcal{A} , it follows that

$$\{n\alpha_r; n=0, \pm 1, \pm 2, \cdots\} \subset \left\{\alpha_r \frac{1-\lambda_r^n}{1-\lambda_r}; n=0, \pm 1, \pm 2, \cdots\right\}.$$

This is obviously impossible.

Case II. If $\lambda_r = 1$ then

$$S^{n}(0) = *e_{1} + \cdots + *e_{r-1} + n\alpha_{r}e_{r}$$

for $n=0, \pm 1, \pm 2, \cdots$. It follows at once that $S^n(0) = nS(0)$, and so a=S(0) is a generator. The lemma now is clear.

We are now in a position to accomplish the proof of Theorem 1. By Lemma 1, $G=Z^p \oplus F$, where F is a finite abelian group. If we define an affine transformation S^* of $G/F=Z^p$ by

$$S^*(x+F) = S(x) + F$$

 S^* satisfies property \mathcal{A} , whence it follows from Lemma 2 that p=1, i.e., $G=Z\oplus F$, which is possible only if $F=\{0\}$. This establishes Theorem 1.

3. Proof of Theorem 2.

Lemma 3. Let G be a finite abelian group with order $r \ge 2$, and S(x) = a + T(x) an affine transformation of G satisfying property \mathcal{A} . Then the subgroup $H = \{x \in G; T(x) = x\}$ is a non-trivial cyclic subgroup generated by $x_0 = a + T(a) + \cdots + T^{k-1}(a)$, where k denotes the period of a under T. Moreover if p denotes the order of x_0 then r = pk.

Proof. In case T(a) = a, the lemma is clear, so we study the case $T(a) \neq a$. Since k < r, we see that $x_0 = a + T(a) + \cdots + T^{k-1}(a) \neq 0$. Let

n = ik + j, where $0 \le i < p$ and 0 < j < k. Then $S^n(0) = ix_0 + (a + T(a) + \cdots + T^{j-1}(a))$.

Therefore

$$T(S^n(0)) - S^n(0) = T^j(a) - a \neq 0$$

from which $H = \{x_0, 2x_0, \dots, px_0\}$ and r = pk.

Lemma 4. Let G be a finite abelian group with order r which has an affine transformation S(x)=a+T(x) satisfying property \mathcal{A} , and let $H=\{x\in G; T(x)=x\}$. If 4 does not divide r, and G/H is cyclic then G is cyclic and a is a generator.

Proof. The proof proceeds by induction on r. If $r \le 3$, the lemma is clear. Now suppose that if $1 \le s < r$, and 4 does not divide s then the lemma is true.

If T(a)=a, the proof is trivial, and so we suppose that $T(a)\neq a$. Let k be the period of a under T and p the order of $x_0=a+T(a)+\cdots+T^{k-1}(a)$. Define an affine transformation S^* of G/H as follows:

$$S^*(x+H) = S(x) + H$$
.

Since S^* has property \mathcal{A} , the order of $a+H\in G/H$ is the greatest in the orders of the elements in the cyclic G/H, whence a+H generates G/H. Clearly G is generated by $\{a,x_0\}$, and so there exist two positive integers m and n such that m devides n, and $G=Z(m)\oplus Z(n)$, where Z(m), Z(n) denote cyclic groups of order m, n, respectively. An elementary calculation shows that the order of a equals n.

If ka=0 then the order of a equals k by virtue of Lemma 3, and so G is isomorphic with the direct product group $H \oplus H_1$, where H_1 denotes the cyclic group generated by a. Hence $G = Z(p) \oplus Z(k)$. Let $T(a) = \lambda x_0 + \mu a$. Then an easy calculation shows that

$$S^{k}(0) = \lambda(1 + (1 + \mu) + \dots + (1 + \mu + \dots + \mu^{k-2}))x_{0} + (1 + \mu + \dots + \mu^{k-1})a = x_{0} \neq 0.$$

From the property of S^* of G/H = Z(k) it follows that

$$1+(1+\mu)+\cdots+(1+\mu+\cdots+\mu^{k-2})=1+2+\cdots+(k-1)$$

(mod k). Let k=hp. Then the above relation holds only if p=2, and so r=4h, which contradicts the hypothesis that 4 *does not divide r*. Thus $ka \neq 0$. Let $ka = tx_0 \in H$, where 0 < t < p.

In case t, p are relatively prime, it follows easily that the order of a equals r=pk, whence a is a generator. In case t, p are not relatively prime, let q be the order of $ka=tx_0$. Then the order of a equals qk, and so r=pk=(p/q)qk=(p/q)n=mn. Therefore p=qm>m. Let $x_0=(\alpha,\beta)\in Z(m)\oplus Z(n)=G$. Then $mx_0=(0,m\beta)\neq (0,0)$. If H_2 denotes the subgroup generated by mx_0 then clearly G/H_2 is not cyclic. However from the construction of H_2 , G/H_2 has an affine transformation satisfying property \mathcal{A} , which contradicts the hypothesis of induction.

By virtue of the above two lemmas, the proof of Theorem 2 is now

easy. It proceeds by induction on r. If $1 \le r \le 3$, the theorem is clear. Now suppose that if $1 \le s < r$ and 4 does not divide s, then the theorem is true.

In case T(a)=a, the proof is trivial, and so we suppose that $T(a) \neq a$. In this case, the subgroup $H=\{x\in G; T(x)=x\}$ is a non-trivial cyclic subgroup by virtue of Lmma 3. By the hypothesis of induction, G/H is cyclic, whence by Lemma 4, G is cyclic and a is a generator. The proof is completed.

4. Counter-examples.

1) In Theorem 2, the hypothesis that 4 does not divide r is not omitted. In fact, let G be the direct product group $Z(2) \oplus Z(2n)$ of cyclic groups with orders 2 and 2n, respectively, where n is an odd integer. Define an affine transformation S of G by

$$S(x, y) = (0, 1) + (x + y, y)$$

It is easy to check that S satisfies property \mathcal{A} . But obviously G is not cyclic.

2) There exists an affine transformation S(x)=a+T(x) satisfying property \mathcal{A} , but T is not the identity transformation. To see this, let G be the cyclic group Z(16) of order 16, and define an affine transformation S of G as follows: S(x)=1+5x. A routine calculation shows that S satisfies property \mathcal{A} , but T(x)=5x is not the identity transformation.

References

- [1] R. Sato: Continuous affine transformations of locally compact totally disconnected groups. Proc. Japan Acad., 46, 143-146 (1970).
- [2] —: Correction to the paper "Continuous affine transformations of locally compact totally disconnected groups" (to appear).
- [3] —: On locally compact abelian groups with dense orbits under continuous affine transformations. Proc. Japan Acad., 46, 147-150 (1970).
- [4] —: Properties of ergodic affine transformations of locally compact groups. I, II. Proc. Japan Acad., 46, 231-235, 236-238 (1970).