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119. A Path Space and the Propagation oI Chaos
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By Tadashi UEN0
Department of Mathematics, Faculty of General Education,

University of Tokyo

(Comm. by Kunihiko KO)Am_, M.Z.)., June 12, 1971)

In [3], we considered a model with infinite number of interacting
particles. A gas model corresponding to a spatially homogeneous
Boltzmann equation with bounded scattering cross section can be dis-
cussed in the frame work, but not the gas of hard spheres.)

Here, we construct a path space which describes, to some extent,
the motion in the model, especially the way of interactions between
particles. Next, we formulate a natural version of the propagation of

Fig. 1

chaos, which Kac [1] discovered. The version needs no approximation
process with respect to the number of particles.

We use the notations and definitions in [3], but rewrite the figure
of branches as in Fig. 1.)

1. Following two lemmas are fundamental.
Lemmal. For x in R and s4 t,

( 2 ) , P(s, b(x), t, R) 1.
bT

In case q(t, x) is bounded,
( 3 ) , P(s, b(x), t, R)= 1, x R.

bT

Here, b(x) for x-(xl, x2, ...) in R denotes b((xl, x2, ..., x())).
Lemma 2. For a branch b,x=(xx, ...x()),E e _q3(R) and stu,

( 4 ) P(s, b(x), u, E)- , P(s, b(xi), t, dy)P(t, b’(y), u, E).
b’<b R(b’)bib/b

1) The space in which the particles move. here or in [3] is the velocity space
in the original gas model. The reader can consult McKean [2] for a more. realistic
description and related problems.

2) We restrict ourselves to binary interactions as in II o.f [3].
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Lemma 1 is proved by an induction with respect to length l(b).
The proof of Lemma 2 has been outlined in [3].

2. Transition probability. Let/ be R tJ {} with as an isolated
point. For x in R R or in R R-, (x) is the number of the com-
ponents of x which are not 3. When (x)(b) and x, x,/, x,/n/,
are the component of x which are not 3, b(x) denotes b((x,x,/,...,
x+...+)_+)).

If (x)= c for x e R R, we define or E e .(R R-) of type

( 5
E=E {3}- E {}- E {}n-,

n+. +n=n, E e _q(R), 1 i k,

P()(s, x, t, )= E P(s, b(x), t, E)
i=l

6 )
, P(s, b(x’), t, E),

(b)(x)

i Xn,/, Xn,/n./, ’’’, Xn,/.../n_/ are not 3
0, if otherwise,

where x (x, ..., x,), ..., x (X,/.../n_,/, "", Xn) and
--(x,/...+n_/, ") eRR. This is extended uniquely to a measure
P(=)(s, x, t, E) on _(R Rn-i).
Then, we can prove easily, by Lemma 1,

Theorem 1. P()(s, x, t, E) is a substochastic measure. In case (3)
holds, it is a probability measure and satisfies a consistency condition"
(7) P(+)(S,x,t,ER)=p(n)(s,x,t,E), for Ee_(RR=-I).

Hence, under the condition (3), there is a unique probability
measure P(s, x, t, E) on the topological Borel field .(R R) of R R
such that
( 8 ) P(s, x, t, IEX R)=P(n)(8, x, t, E), E e (RRn-l)
by the Kolmogorov extension theorem. Thus, we always assume (3)
from now on.

For x e R R- and E e _(R R-) of type (6), we put

P(s, x, t, E)-- E P(s, b(x), t, E),

if x,.+,..., X+_+n_+ are in R,
0, if otherwise.

This is also extended to a substochastic measure on (RR-)
uniquely.

In case (x) oo for x e R R, let n be the last coordinate number
such that the corresponding component x is in R. We put
(10) P(s, x, t, E E2) P(s, x, t, E) 6(E2),
for Ee.(RR-) and E2e_a3(RR=), where xx=(x, ...,x,). Then,
we define P(s, x, t, E), in ease (x)< or, as the unique extension of (10)
on _(R R).

Let S be the set of all x such that (x)= oo. Then, it can be proved
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that P(s, x, , S)= 1 or 0, according as (x)- oo or not.
Theorem 2. P(s, x, t, E) satisfies the Chapman-Kolmogorov equa-

tion"

P(s, t, dy)P(t, E)X y,(11)
=P(s,x,u,E), xeRR,Ee(RR).

This is proved by combining the following (12)-(14), where the
essential part of (12) and (13) is reduced to Lemma 2.

(12) P(s, x, , dy) P(t, b(y), u, E): P(s, b(x), u, E).
JR xn g(b) =(y) (b) =(x)

P(s, t, dy) P(t,b(y), E)X u
(13)

E P(s, b(x), u, E),
(b)(Xln)

where x]:(x, ., x) and y]:(y, .., y) for x:(x, .) and y=(y,
..) in R xR’. For bounded measurable unctions f and f on
R x R- and R x

P(s, t, dy)A(y)f(y)
(14) -.

RXR RXR

where x--(x, ..., x), x--(x+, .), y:(y, y) and Y:(Yn+I, ").
The minimal solution P(Y)(s, x, t, E) of (1) in [3]-II and P(s, x, t, E)

is related as in

Theorem 3. For each probability measure f on (R, (R))

(lg) P(, , t, )= (g)P(, x, t, x R).
3. Path aee. Now, let I be the time interval and let D be the

set of all funetions on I which take values on R X R
(R X R). Let be the Borel field generated by all cylinder sets

and let x(m)-(z}(), (), ...) be
at time t I. hen, by heorem and the Kolmogorov extension
theorem, there is a unique robability measure P(,(.)on (D,)for
each (t, x), such that

P,({ 91 x() ,..., x() s })

(16) = P(t, x, t, @) I P(t_, ,_, t_, _)

P(t_, ._, t, A),
for A, ., A (RXR) and t

hus, the sytem (9, , P,(. ), R x R, x) defines a arkov process
with transition probability P(, x, t, E).

he idea of the path saee is in Pig. 2. Naeh artiele in R moves
independently with others until a natural jump time of its own comes,
or it suffers an interaction with another particle in R, whose coordinate
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x x
31 2

Fig. 2

is the nearest left hand neighbour of its coordinate.
If a natural jump time comes first, it jumps interacting with the

particle in R with the nearest coordinate at the right hand, and then
continues the motion in R. Here, the jumping measure (x’]t, x,E)
depends on the position x’ of the right hand particle in R.

On the other hand, if the particle suffers an interaction with the
particle at the left hand side, it jumps instantly into 3, while every
particle at 3 stands still and never interacts with others.

In a customary expression, the particles at point 3 may be called
killed. But, in our model, they should be considered as forgotten or
ignored from the point of view of the particles remained in R at the
left side, just because they will never interact with the remaining par-
ticles again. Thus, they stand still at 3 only in appearance. This can
be explained in terms of the original gas model, where the gas is so
dilute that the second or later interactions between the same particles
can (or should) be ignored.

4. Propagation of chaos. Although the particles in a Boltzmann’s
gas model are interacting, there is a phenomenon called the propaga-
tion of chaos. If all particles start independently with a same distri-
bution f at time s, then, they are distributed independently with a
common distribution, at any later time t, where the distribution of each
particle is the solution of the Boltzmann equation at time t with initial
data f at time s. In a word, the chaos at the initial time s propagates
for later times. Mark Kac [1] discovered this, and formulated and
proved it for his one-dimensional model of a Maxwellion gas.

Here, we formulate a version of this as follows. Fix a time s,
and let N(w) =_ 1, N(w) inf{n > ll(+)(w) e R} N(w)
--inf {n>ll X(’+-+N-’+)(W) e R} and write ?)(O))---XN1)((.0),.2)(O))
=x’+)(w), ..., x)(u)=x+’"+)(w) for t e [s, ]. In a word,
is the i-th particle from the left which is remaining in R up to time

Theorem 4. For a probability measure f on _(R) and times s t
<... <t=,



No. 6] Path Space and Propagation of Chaos 533

f(dx)P,8,x((a,’", e ,...,, , ,..., ))
(17) =I 1) e 3"f(dx)P<,((x,, ...,
When A--A. A,,i--l,2, ...m, $his is equal $o

P)(dxi) (ft)(tl, x, t, dx)...
i=1 Al,i

P(Xt_)(t_, t_, dx_)P(f-?(t_, t, A,).Xm-2 Xm-i,
Am-l,i

Here, A, ..., A are in (R) and f(dx) is the infinite direct product

This is R kind o strong MRrkov property with respect to the
coordinRte number . The proo is reduced to (14).

The proo o the propositions will be published elsewhere.
The Ruthor expresses his thRnks to his riends Rt the Rockefeller

University during his stay in 1967-8, especiRlly to Henry McKeRn, to
whom he owes very much.
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