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1. Introduction.

In this note we shall consider a global property, that is, the quasi-
periodic property, of the solutions of the following quasilinear one
dimensional wave equation with dissipative term au,, where « is a
constant :

(1 ) M(u)———utt_uxw'l'aut:h(w, T, Uy Ug, Uy), )
where % is quasiperiodic with basic frequencies o,, - -,0, in t. We
shall show the existence of such quasiperiodic solutions of the form (1)
that have the same basic frequencies as 7 and satisfy the boundary
conditions (0, t) =u(x, t)=0. These solutions are classical solutions.

The case m=1 is the periodic case and was already solved by
Rabinowitz [1], [2]. Especially, in [2] equation is strictly nonlinear.

2. Notations and definitions.

Definition. f(z,t) is called quasiperiodic with basic frequencies
@y, * -+ -, 0 in t, if there exists a function F(«, 4, - - -, 6,,) such that f(x, t)
=F(z, wt, -+, 0,t), where F(zx,0,, --.,0,) is a continuous function of
period 2z in @,, - - -,0,,. Basic frequencies w,, - - -, w,, are real numbers.
We shall denote by B*w, :--,0,) the class of f(x,t) for which
F(x,0, -++,0,) is Ck-class in z,6,---6, and by Fw,-::,w,)
C B (w,, - -+, wy,) the class of f(x, t) which is 2z-periodic in (1< k< 00).
Every f(z,t) ¢ F* is expanded in the Fourier series if k=1:

f(x, )= Z mejkewxet(m,k)t_

jez,ke

We introduce the norms in F* by || fl|=>_ | fs| and
N =N+ Fall S
Now we assume that i(z, ¢, p, q, 7) is in the form
S, ) +9(,t,p, 49,7, f(z,1)=0.

Then we can represent g(x, t, », q, r) in the form G(x, w,t, - - -, 0, t, D, q, 1),
where G(z,6,, - - -, 0., D, ¢, 7) is continuous and 2z-periodicin d,, - - -, O,,.
Further we assume that f(x,t) and g(z,t,u,u,, u;) vanish at the
boundary =0, x=n.

3. The existence of quasiperiodic solutions.

3.1. At first we consider the case where the forcing term
h(zx, t, u, u,, ;) does not depend on wu, u,, u, :
(2) M(u)=utc—uwx+aut:f(x, t).
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As for (2) we have two propositions:

Proposition 1. If f(x,t) belongs to F(w,, - - -, w,) and a0, then
) has a unique classical solution u=u(x,t)c F (o, -+ ,w0,). This
solution satisfies the estimate :

lul,=C@|fll, e [LfL=C@|Sl, where L=M"'
and C(x) ts a constant depending only on «.

Proposition 2. If f(x,t) belongs to F=(w,, - - -, w,) and a=0, then
(2) has a unique solution u=wu(x,t) ¢ F(w, - -+, 0,), provided that 1,
@y, + + -y Oy SAEISFY the trrationality condition: For some constants y>0
and T>m, (1, Wyy -+ ‘,wm) satisfy |k0+k1wl+ e +kmwm|zr(]kol+ e
+1kn )" for all (kyy - -+, k) € ZMFL

Above two propositions are proved by comparing the Fourier coef-
ficients and using the estimates of them. Here we need the following
lemma:

Lemma. Let%(x, ---,x,) be C>-function of period 2rin x,, - - -, x,.
Then the Fourier coefficients fi of F=3 ,czs f1e"®" satisfy the
estimates :

C(s) sup sup |[D°F|

S |o|SNS L1+ s
= - TR
or any natural number N, where k=(k,, - - -, k) € Z° an
f l ber N, wh k= k) d
a[al
Dv__

axgl . .ax:s

Remark. Irrationality condition in Proposition 2 is not unreason-
able, since almost all (wy, ,, - - -, w,) € R™*! satisfy this condition.

3.2. Now we consider the quasilinear case. We assume the
following :

f(z,t) and g(z, t, p, q,7) belong to F=(,, - -+, w,);
C){G(x,0,,-+,0,,D,q,7) is analytic in p, q, r in neighborhood
of (0,0, 0) with its derivatives of sufficiently high orders.
Our results are as follows. Assume a=x0.

Theorem A. Suppose that in addition to the condition (C) the
convergence radius R of the power series which expresses G(- - -,p,q,r)
satisfies the inequality 2C(a) | fII<R. If g(x,t,p,q,7) is of the form
eg(x, t, v, q, 1) for sufficiently small ¢>0, that is, (1) ts a perturbed equa-
tions of (2), then (1) has a unique solution u=u(x,t) e F(w, - - -, 0y).
This satisfies the estimate: ||u|,=<2C(a) || f], where C(e) is the same as
in Proposition 1.

Theorem B. Suppose that in addition to (C), the power series
G(---,D,q,71) begins with order k=2. If| f| is sufficiently small, then
we obtain the same conclusion as that of Theorem A.

These theorems can be proved by applying the well-known Picard’s
iteration method and the estimates from Proposition 1, lemma and
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Cauchy’s estimation formula.

Finally we consider the stability of the above solution u(x,t) of
Theorem A. Suppose that there exists a second global solution v(x, t)
of (1) which satisfies the boundary conditions. Then we have the
following result:

Theorem C. There exists a constant f(a, ¢, 9) >0 such that |u(x, t)
—v(z, t)|Zre~ ¥t for sufficiently small >0 and the initial values of v
sufficiently close that of w, where y depends on « and v initially.

For the proof, see [1].
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