94. Codimension 1 Foliations on Simply Connected 5-Manifolds

By Kazuhiko FUKUI

Mathematical Institute, Kyoto University

(Comm. by Kinjirô KUNUGI, M. J. A., June 12, 1973)

1. Recently N. A'Campo [1] has shown that every simply connected, closed 5-manifold with vanishing second Stiefel-Whitney class admits a codimension 1 foliation. The essential point in his construction is to utilize Smale's classification theorem [4].

In this note, similarly utilizing Barden's result [2], we show that every simply connected, closed 5-manifold admits a codimension 1 foliation. All the manifolds and the foliations considered here, are smooth of class C^{∞} .

- 2. Preliminaries. a) The second Stiefel-Whitney class $\omega^2(M)$ of a simply connected manifold M may be regarded as a homomorphism $\omega^2: H_2(M: \mathbb{Z}) \to \mathbb{Z}_2$, and we may consider ω^2 to be non-zero on at most one element of a basis. In a simply connected 5-manifold, the value of ω^2 on the homology class carried by an imbedded 2-sphere is the obstruction to the triviality of its normal bundle. Such a "non-zero valued" class has order 2^i for some positive integer i. Then i is a diffeomorphism invariant i(M) of M.
- D. Barden [2] has classified simply connected, closed, smooth 5-manifolds under diffeomorphism. Such a manifold is determined by $H_2(\)$ and $i(\)$. More precisely:

Proposition 1 [2]. Simply connected, closed, smooth, oriented 5-manifolds are classified under diffeomorphism as follows. A canonical set of representatives is $\{X_j \sharp M_{k_l} \sharp \cdots \sharp M_{k_s}\}$, where $-1 \leq j \leq \infty$, $s \geq 0$, $1 < k_1$ and k_i divides k_{i+1} or $k_{i+1} = \infty$. A complete set of invariants is provided by $H_2(M)$ and i(M). (for the notation, see [2], p. 373.)

b) S^2 -bundles over S^2 with group SO_3 are classified by $\pi_1(SO_3) \cong \mathbb{Z}_2$. We denote by A the product, and by B the non-trivial bundle. Next consider reductions of the structure group to SO_2 , which are classified by $\pi_1(SO_2) \cong \mathbb{Z}$. Let T_k be the S^2 -bundle associated with the reduction given by the integer k. Furthermore, let x be the class in $H_2(T_k)$ of the sphere imbedded as the cross-section, corresponding to the "south pole", and y be the class of the sphere imbedded as a fiber. If \cdot denotes the intersection number of homology class, then $x \cdot x = k$, $x \cdot y = 1$ (we have the orientation of y to ensure this) and $y \cdot y = 0$. For the homology bases of A, B, we shall reduce the bundles as T_0 , T_1 . Then we have, in [5]

Proposition 2. Let N be a simply connected 4-manifold, $\omega \in H_2(N)$ with $\omega \cdot \omega = 2s$, then $N \# T_k$ admits a diffeomorphism inducing the following automorphism of $H_2(N \# T_k)$:

$$\xi \in H_2(N) \rightarrow \xi - (\xi \cdot \omega)y, x \rightarrow x + \omega - sy, y \rightarrow y.$$

Generators x,y of the second homology groups of various copies of the 2-sphere bundles A,B will carry the same suffixes as the bundles. Now, consider for the case $N=A_1,T_k=A_2$. (i.e., k is even.) Put $\omega=ly_1$. By Proposition 2, we have a diffeomorphism $d_l:A_1\sharp A_2\to A_1\sharp A_2$ for each $1< l<\infty$. Let $e:A_1\sharp A_2\to A_1\sharp A_2$ be a diffeomorphism which induces the automorphism of $H_2\colon x_1,y_1,x_2,y_2\to y_2,x_2,y_1,x_1$. Put $\alpha(l)=d_l\cdot e$. Next consider for the case $N=B_1,T_k=B_2$. (i.e., k is odd.) Put $\omega=2^j\cdot x_1$. As before, by Proposition 2 we have a diffeomorphism $f_j:B_1\sharp B_2\to B_1\sharp B_2$ for each $1\leq j<\infty$. Let $g:B_1\sharp B_2\to B_1\sharp B_2$ be a diffeomorphism which corresponds to the automorphism $x_1,y_1,x_2,y_2\to x_2,y_2,x_1,y_1$. Put $\beta(j)=f_j\cdot g$. Hence we have an orientation preserving diffeomorphism $\alpha(l):A_1\sharp A_2\to A_1\sharp A_2$ for each $1< l<\infty$ (resp. $\beta(j):B_1\sharp B_2\to B_1\sharp B_2$ for each $1\leq j<\infty$) such that the inducing automorphism $\alpha(l)_*:H_2(A_1\sharp A_2)\to H_2(A_1\sharp A_2)$ (resp. $\beta(j)_*:H_2(B_1\sharp B_2)\to H_2(B_1\sharp B_2)$) corresponds to the following matrix;

$$A(l) = egin{bmatrix} l & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \ 0 & 1 - l & 0 \ 1 & 0 & 0 & 0 \end{bmatrix} \quad egin{bmatrix} ext{resp.} & B(j) = egin{bmatrix} 0 & -2^j & 1 & 0 \ 0 & -2^j & 0 & 1 \ 1 & -2^{2j-1} & 2^j & 0 \ 0 & 1 & 0 & 0 \end{bmatrix} \end{pmatrix}$$

We denote by N(l) (resp. L(j)) the manifold obtained by identifying points (x,0) and $(\alpha(l)\cdot x,1)$ for $x\in A_1\sharp A_2$ (resp. (x,0) and $(\beta(j)\cdot x,1)$ for $x\in B_1\sharp B_2$) in $(A_1\sharp A_2)\times [0,1]$ (resp. $(B_1\sharp B_2)\times [0,1]$). The projection $(A_1\sharp A_2)\times [0,1]\to [0,1]$ (resp. $(B_1\sharp B_2)\times [0,1]\to [0,1]$) induces a fiber map $N(l)\to S^1$ with $A_1\sharp A_2$ as a fiber (resp. $L(j)\to S^1$ with $B_1\sharp B_2$ as a fiber). Let CP^2 be the complex projective plane. We denote by L(-1) the manifold obtained by attaching $CP^2\times \{0\}$ and $CP^2\times \{1\}$ in $CP^2\times [0,1]$ by a diffeomorphism which reverses the orientation of the projective line. Let $L(\infty)$ be the product $CP^2\times S^1$.

Lemma (i) $H_2(N(l)) = \mathbf{Z}_l + \mathbf{Z}_l \text{ for } 1 < l < \infty, H_2(L(j)) = \mathbf{Z}_{2^j} + \mathbf{Z}_{2^j} \text{ for } 1 \le j < \infty, H_2(L(-1)) = \mathbf{Z}_2 \text{ and } H_2(L(\infty)) = \mathbf{Z}.$

(ii) $\omega^2(N(l)) = 0 \text{ for } 1 < l < \infty. \ \omega^2(L(j)) \neq 0 \text{ for } j = -1, 1, 2, \dots, \infty.$

Proof. (i) It follows by noting the attachment.

(ii) First note that $i^*(\tau(N(l))) = \tau(A_1 \sharp A_2) \oplus \varepsilon^1$ for $1 < l < \infty$, $i^*(\tau(L(j))) = \tau(B_1 \sharp B_2) \oplus \varepsilon^1$ for $j \ne -1$, ∞ , $i^*(\tau(L(j))) = \tau(CP^2) \oplus \varepsilon^1$ for j = -1, ∞ , where i is the inclusion map of $A_1 \sharp A_2$ (resp. $B_1 \sharp B_2$ or CP^2) into N(l) (resp. L(j)) as a fiber and ε^1 is a trivial line bundle. Then we have $i^*\omega^2(N(l)) = \omega^2$ $(A_1 \sharp A_2)$, $i^*\omega^2(L(j)) = \omega^2(B_1 \sharp B_2)$ for $j \ne 1$, ∞ and $i^*\omega^2(L(j)) = \omega^2(CP^2)$ for j = -1, ∞ . Since $i^*: H^2(N(l); \mathbf{Z}_2) \to H^2(A_1 \sharp A_2; \mathbf{Z}_2)$ is injective, $\omega^2(A_1 \sharp A_2)$

=0, $\omega^2(B_1 \sharp B_2) \neq 0$ and $\omega^2(CP^2) \neq 0$, we have $\omega^2(N(l)) = 0$ and $\omega^2(L(j)) \neq 0$. Let $p \in A_1 \sharp A_2$ (resp. $B_1 \sharp B_2$) be a fixed point of $\alpha(l)$ (resp. $\beta(j)$). Let $\varphi \colon S^1 \rightarrow N(l)$ (resp. L(j)) be an imbedding defined by $t \in [0,1] \rightarrow (p,t) \in (A_1 \sharp A_2) \times [0,1]$ (resp. $(B_1 \sharp B_2) \times [0,1]$). This imbedding is transverse to the fibers. Therefore this imbedding is transverse to the foliation on N(l) (resp. L(j)) induced from the pointwise foliation of S^1 . Then by modifying the foliation on N(l) (resp. L(j)), we can obtain the foliation on N(l) (resp. L(j)) which contains a Reeb component (see [3]). We denote by $(M(l), \partial M(l))$, (resp. $(K(j), \partial K(j))$) the foliated manifold with boundary obtained by removing the Reeb component from N(l) (resp. L(j)). Then $\partial M(l)$ (resp. $\partial K(j)$) is a closed leaf diffeomorphic to $S^1 \times S^3$, and $H_2(M(l)) = Z_1 + Z_1$, $H_2(K(j)) = Z_2 + Z_2$ for $1 \leq j < \infty$, $H_2(K(-1)) = Z_2$, $H_2(K(\infty)) = Z$, $\omega^2(M(l)) = 0$ and $\omega^2(K(j)) \neq 0$.

3. Theorem Every simply connected, closed 5-manifold admits a codimension 1 foliation.

Proof. It is sufficient to prove for the case $i(M) \neq 0$ since N. A'Campo [1] has shown the theorem for the case i(M) = 0. Let M be a simply connected, closed 5-manifold with i(M)=j. As first consider for the case $j \neq -1, \infty$. Then we have $H_2(M) = \widehat{Z_1 + \cdots + Z_n} + Z_{2^j} + Z_{2^j}$ $+Z_{n_1}+Z_{n_2}+\cdots+Z_{n_s}+Z_{n_s}$. By the way, we have already known in [3] that S⁵ admits a codimension 1 foliation. By modifying the foliation on S^5 , we can obtain the foliation on S^5 which contains (n+s+1)-Reeb components. We remove (n+s+1)-Reeb components from the foliated 5-sphere. Then the resulting manifold is the foliated manifold with (n+s+1)-copies of $S^1 \times S^3$ as a boundary. We denote it by (B(n+s+1), $\partial B(n+s+1)$). Let X be the manifold obtained by attaching, along the boundaries, a union of *n*-copies of $(B(1), \partial B(1)), (K(j), \partial K(j))$ and $\bigcup_{i=1}^{s} (M(n_i), \partial M(n_i))$ to $(B(n+s+1), \partial B(n+s+1))$. By using Van Kampen's theorem and Mayer Vietoris exact sequence, we can show $\pi_1(X) = 0$, $H_2(X) = H_2(M)$, and i(X) = j. Therefore X is diffeomorphic to M by Proposition 1. Hence it follows that M admits a codimension 1 foliation. It is similar for the case $j=-1, \infty$.

References

- [1] N. A'Campo: Feuilletages de codimension 1 sur des variétés de dimension
 5. C. R. Acad. Sci. Paris, 273, 603-604 (1971).
- [2] D. Barden: Simply connected five manifolds. Ann. Math., 82, 365-385 (1965).
- [3] H. B. Lawson: Codimension-one foliations of spheres. Ann. Math., 94, 494-503 (1971).
- [4] S. Smale: On the structure of 5-manifold. Ann. Math., 75, 38-46 (1965).
- [5] C. T. C. Wall: Diffeomorphisms of 4-manifolds. J. London Math. Soc., 39, 131-140 (1964).