10. Dimension of the Fixed Point Set of Z_{pr} -actions

By Katsuo KAWAKUBO Osaka University

(Comm. by Kenjiro SHODA, M. J. A., Jan. 12, 1974)

§ 1. Introduction. Concerning the dimension of the fixed point set of G-actions, much has been studied [3], [1], [2], [9], [10], [7], and [8]. In this note, we consider a Z_{pr} -action (M^n, ϕ, Z_{pr}) on a closed oriented manifold M^n and study the relation between the bordism properties of M^n and the dimension of the fixed point set. If the action is regular, such a problem was studied in [8]. Here we are concerned with general Z_{pr} -actions.

In order to state the results, we introduce the following notations. Denote by Ω_n the Thom group of all bordism classes $[M^n]$ of closed oriented smooth n-manifold M^n . Let $\Omega(4j)$ be the subring of $\Omega_* \otimes Z_p$ generated by $\{\Omega_0, \Omega_4, \Omega_8, \cdots, \Omega_{4j}\}$. Let $F(Z_{pr}, k)$ be the subring of $\Omega_* \otimes Z_p$ generated by those bordism classes which are represented by a manifold admitting a Z_{pr} -action such that the dimension of the fixed point set is less than or equal to k.

Then we have

Theorem. (1)
$$F(Z_{p^r}, 4k) = F(Z_{p^r}, 4k+1) = \Omega(4kp^r + 2p^r - 2)$$

(2)
$$F(Z_{pr}, 4k+2) = F(Z_{pr}, 4k+3) = \Omega(4kp^r + 4p^r - 4).$$

Remark. If k=-1, then Theorem means the main result of Conner-Floyd [4].

Corollary 1. Let (M, Z_{pr}) be a Z_{pr} -action. If [M] is indecomposable in $\Omega_* \otimes Z_p$, then there exists a component of the fixed point set of dimension greater than or equal to

$$\frac{\dim M}{p^r}$$
 -2.

Corollary 2. Each element $x \in \Omega_m$ has a representative which admits a Z_{pr} -action with fixed point set of dimension less than or equal to m/p^r .

Throughout this paper, p denotes an odd prime integer.

The results in this paper are oriented bordism versions of the excellent papers [5], [7] of tom Dieck.

Detailed proof will appear elsewhere.

§ 2. Outline of the proof. The following diagram is an oriented bordism version of tom Dieck [5],

$$\begin{array}{cccc} G \mathcal{Q}_{*^{p^r}}^{Z_{p^r}} & \xrightarrow{i} & \mathcal{Q}_{Z_{p^r}}^* & \xrightarrow{\alpha} & \mathcal{Q}^*(BZ_{p^r}) \\ F \Big| & & \downarrow & & \downarrow & & \downarrow \\ \mathcal{Q}_*\Big(\prod_i BU(n_j)\Big) & \longrightarrow S^{-1} \mathcal{Q}_{Z_{p^r}}^* \xrightarrow{S^{-1}\alpha} S^{-1} \mathcal{Q}^*(BZ_{p^r}) \end{array}$$

where $G\Omega_*^{Z_{p^r}}$ denotes the geometric bordism of oriented Z_{pr} -manifolds.

Let $\Omega^*(BZ_{pr}) \xrightarrow{\pi} \Omega^*$ be the map induced by the map: one point $\to BZ_{pr}$ and $D: \Omega^* \to \Omega_{-*}$ be the Atiyah-Poincaré duality and $\pi': \Omega_* \to \Omega_* \otimes Z_p$ be the projection map. Then it is easy to see

Lemma 1. By the composition of the following maps

$$G\Omega_n^{Z_{p^r}} \xrightarrow{i} \Omega_{Z_{p^r}}^{-n} \xrightarrow{\alpha} \Omega^{-n}(BZ_{p^r}) \xrightarrow{\pi} \Omega^{-n} \xrightarrow{D} \Omega_n,$$

 $[M^n, \phi, Z_{nr}]$ goes onto [M].

Let ξ_{∞} be the canonical complex line bundle over CP_{∞} and let $\pi_i: CP_{\infty} \times CP_{\infty} \to CP_{\infty}$ be the projection onto the *i*-th factor, i=1,2. If we denote the cobordism Euler class $e(\xi_{\infty})$ by T, we have

$$\Omega^*(CP_{\infty}) \cong \Omega^*[[T]]$$

and

$$\Omega^*(CP_{\infty} \times CP_{\infty}) \cong \Omega^*[[T_1, T_2]]$$

where $T_i = \pi_i^*(T)$. Hence we get a formal group law $F(T_1, T_2)$ by setting

$$F(T_{\scriptscriptstyle 1},T_{\scriptscriptstyle 2})\!=\!e(\xi_{\scriptscriptstyle \infty}\hat{\otimes}\xi_{\scriptscriptstyle \infty})\!=\!\sum_{i,j}c_{ij}T_{\scriptscriptstyle 1}^iT_{\scriptscriptstyle 2}^j$$

where $c_{ij} \in \Omega^{2-2i-2j}$ [11]. If i is an integer, let $[i]_F(T)$ be the operation of "multiplication by i" for the formal group. Let $j: Z_{pr} \to S^1$ be the natural inclusion, which induces $Bj: BZ_{pr} \to BS^1 \cong \mathbf{CP}_{\infty}$. By making use of the map $(Bj)^*: \Omega^*(\mathbf{CP}_{\infty}) \to \Omega^*(BZ_{pr})$, we have

$$\Omega^*(BZ_{p^r}) \cong \Omega^*[[T]]/[p^r]_F(T).$$

Moreover it is seen by the method of [6] that the Ker $\Lambda \cdot (Bj)^*$ is the ideal

$$[p^r]_F(T)/[p^{r-1}]_F(T)$$
.

Since $[p^r]_F(T)/[p^{r-1}]_F(T)=p+T\cdot G$, where G is a power series in T, we have

Lemma 2. $D\pi \Lambda^{-1}(0) = p\Omega_n$.

The following lemma will show some of the differences between [7] and our case.

Lemma 3. $S^{-1}\Omega_{x_{pr}}^*\cong \Omega_*\Big(\prod\limits_j BU\Big)\otimes Z[V_j,V_j^{-1}].$ Here $1\leq j\leq (p^r-1)/2$ and V_j corresponds to the Euler class of the 1-dimensional complex vector space on which $\exp 2\pi i/p^r$ acts by multiplication with $\exp 2\pi ji/p^r$.

By combining Lemma 2 and Lemma 3, we have

Lemma 4. The composition $\pi' \cdot D \cdot \pi \cdot \Lambda^{-1} \cdot S^{-1}\alpha$ induces a well-defined ring homomorphism,

$$\beta$$
: Image $\lambda \rightarrow \Omega_* \otimes Z_p$.

Let $A: \Omega_*\Big(\prod_j BU\Big) \otimes Z[V_j, V_j^{-1}] \to \Omega_*\Big(\prod_j BU\Big) \otimes Z\Big[\frac{1}{2}\Big][V_j, V_j^{-1}]$ be the map induced by the inclusion $Z \to Z\Big[\frac{1}{2}\Big]$. It follows from Lemma 4 that β induces a map

$$\beta'$$
: Image $\lambda \otimes Z \left[\frac{1}{2} \right] \rightarrow \Omega_* \otimes Z_p \otimes Z \left[\frac{1}{2} \right] \cong \Omega_* \otimes Z_p$.

Since $Z\left[\frac{1}{2}\right]$ is a flat Z-module, the map

$$\begin{split} A \otimes \mathbf{1} &: \text{Image } \lambda \otimes Z \Big[\frac{1}{2} \Big] \!\!\to\!\! \Omega_* \Big(\prod_j BU \Big) \!\!\otimes\! Z \Big[\frac{1}{2} \Big] [V_j, V_j^{-1}] \otimes Z \Big[\frac{1}{2} \Big] \\ &\cong \! \Omega_* \Big(\prod_j BU \Big) \!\!\otimes\! Z \Big[\frac{1}{2} \Big] [V_j, V_j^{-1}] \end{split}$$

is injective and $(A\otimes 1)$ (Image $\lambda\otimes Z\left[\frac{1}{2}\right]$)=Image $(A\lambda)$. Therefore we have shown the following

Lemma 5. There exists a ring homomorphism

$$\beta''$$
: Image $(A\lambda) \rightarrow \Omega_* \otimes Z_n$

such that $\beta'' \cdot A \cdot \lambda = \pi' \cdot D \cdot \pi \cdot \alpha$.

Let F_k be the subring of $\Omega_*\left(\prod_j BU\right) \otimes Z\left[\frac{1}{2}\right][V_j, V_j^{-1}]$ generated by

$$\bigoplus_{i \leq k} \varOmega_i \! \Big(\textstyle\prod_j BU \Big) \! \otimes \! Z \! \left[\frac{1}{2} \right] \! [V_j^{\scriptscriptstyle -1}].$$

Put $D_k = F_k \cap \text{Image } (A \cdot \lambda)$.

We now prove the formula (1) of Theorem.

By choosing simply the tom Dieck's examples of dimension zero mod 4 [7], we have

Lemma 6. There are Z_{pr} -actions (M_j, Z_{pr}) $j=1, 2, \cdots, kp^r + (p^r-1)/2$, such that

- (1) dim $M_i = 4j$
- (2) $[M_j]$ is a generator of the polynomial ring $\Omega_* \otimes Z_p$,
- (3) $A\lambda i[M_j, Z_{pr}] \in D_{4k}$.

It follows from Lemma 6 that

$$F(Z_{p^r}, 4k) \supset \Omega(4kp^r + 2p^r - 2).$$

Suppose that there exists a Z_{pr} -action (M, Z_{pr}) such that [M] is in $F(Z_{pr}, 4k)$ but not in $\Omega(4kp^r + 2p^r - 2)$. Since $\Omega_* \otimes Z_p$ is the polynomial ring over Z_p ,

$$[M], [M_1], [M_2], \cdots, [M_{kpr+(pr-1)/2}],$$

are algebraically independent over Z_p . On the other hand, D_{4k} has transcendence degree at most $kp^r + (p^r - 1)/2$. By combining Lemma 5 and Lemma 6, we have already found $kp^r + (p^r - 1)/2$ independent elements in D_{4k} . Therefore

 $A\lambda i[M, Z_{pr}], A\lambda i[M_1, Z_{pr}], \cdots, A\lambda i[M_{kp^r+(p^r-1)/2}, Z_{pr}],$

are algebraically dependent. In view of Lemma 5, this means [M], $[M_1]$, \cdots , $[M_{kpr+(pr-1)/2}]$ are algebraically dependent, contradicting the assumption.

The proof of the formula (2) of Theorem will be shown quite similarly.

Corollary 1 and Corollary 2 will follow from Theorem directly.

Remark. Professor Tammo tom Dieck kindly informed me that results in this paper can be generalized to the case of arbitrary abelian *p*-group actions.

References

- [1] Boardman, J. M.: On manifolds with involution. Bull. A. M. S., 73, 136-138 (1967).
- [2] Conner, P. E.: Seminar on Periodic Maps. Lecture Notes in Math., 46. Springer-Verlag (1967).
- [3] Conner, P. E., and Floyd, E. E.: Differentiable Periodic Maps. Springer-Verlag (1964).
- [4] ---: Maps of odd period. Ann of Math., 84, 132-156 (1966).
- [5] tom Dieck, T.: Bordism of G-manifolds and integrality theorems. Topology, 9, 345-358 (1970).
- [6] —: Kobordismentheorie klassifizierender Räume und Transformationsgruppen. Math. Z., 126, 31-39 (1972).
- [7] —: Periodische Abbildungen unitärer Mannigfaltigkeiten. Math. Z., 126, 275-295 (1972).
- [8] Kawakubo, K.: The Index and the Generalized Todd Genus of Z_p -actions (to appear in Proc. Intern. Conference on Manifolds and Related Topics in Topology). Tokyo (1973).
- [9] Kawakubo, K., and Uchida, F.: On the index of a semi-free S¹-action. J. Math. Soc. Japan, 23, 351-355 (1971).
- [10] Ossa, E.: Cobordismustheorie von Fixpunktfreien und Semifreien S¹-Mannigfaltigkeiten (Thesis). Bonn (1969).
- [11] Quillen, D.: Elementary proofs of some results of cobordism theory using Steenrod operations. Advance in Math., 7, 29-56 (1971).