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46. A Remark on Almost-Continuous Mappings

By Takashi NOIRI
Miyakonojo Technical College

(Comm. by Kinjiré KuNvci, M. J. A.,, March 12, 1974)

1. Introduction. In 1968, M. K. Singal and A. R. Singal [2] de-
fined almost-continuous mappings as a generalization of continuous
mappings. They obtained an extensive list of theorems about such a
mapping, among them, the following two results were established :

Theorem A. Let f,: X,—X* be almost-continuous for each a el
and let f: X, —IX* be defined by setting f((x)=(f.x.)) for each
point (x,) € [I1X,. Then f is almost-continuous.

Theorem B. Let h: X—IIX, be almost-continuous. For each
aecl, define f,: X—X, by setting f.(v)=0(x)),. Then f, is almost-
continuous for all e l.

The purpose of the present note is to show that the converses of
the above two theorems are also true. As the present author has a
question in the proof of Theorem B, we shall give the another proof.

2. Definitions and notations. Let A be a subset of a topological
space X. By Cl A and Int A we shall denote the closure of A and the
interior of 4 in X respectively. Moreover, A is said to be regularly
open if A=1Int Cl 4, and regularly closed if A=ClInt A. By a space
we shall mean a topological space on which any separation axiom is
not assumed. A mapping f of a space X into a space Y is said to be
almost-continuous (simply a.c.) if for each point # ¢ X and any neigh-
borhood V of f(x) in Y, there exists a neighborhood U of « such that
fO)cInt ClV. It is a characterization of a.c. mappings that the
inverse image of every regularly open (resp. regularly closed) set is
open (resp. closed) [2, Theorem 2.2]. A mapping is said to be almost-
open if the image of every regularly open set is open.

3. Preliminaries. We begin by the following lemma.

Lemma 1. If a mapping f: X—Y is a.c. and almost-open, then
the inverse image £~ (V) of each regularly open set V of Y is a regular-
ly open set of X.

Proof. Let V be an arbitrary regularly open set of Y. Then,
since f is a.c., f~%(V) is open and hence we obtain that f~(V)CInt Cl
S~YV). In order to prove that f-'(V) is regularly open, it is sufficient
to show that f-%(V)>DInt Cl f~Y(V). Since f is a.c. and Cl1V is regu-
larly closed, f-%(Cl1V) is closed and hence we have Int Clf-%(V)
cClf~Y(V)cf-(ClV). Since f is almost-open and Int Cl f-Y(V) is
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regularly open, f[IntCl f-%(V)] is open and hence we have
SflInt C1 f~4(V)1cInt Cl1V=V. Therefore, we obtain that f-(V)
DInt Cl f-(V). Hence f~(V) is a regularly open set in X.

Remark. The composition of a.c. mappings is not always a.c.,
as the following counter-example shows.

Example. Let X be the set of all real numbers and I',={X, ¢}
U{ACX|X—A: countable}, We put Y={a,0}, I'y={Y,{a},d},
Z={a,b,c}and I',={Z, {a, c}, {a}, {c}, ¢}. Consider a mapping f: (X, I",)
—(Y,I',) defined as follows: f(x)=a if x is rational; f(x)=b if »
is irrational and a mapping g: (Y,[)—(Z, ")) defined as follows:
g(@)=a and ¢g(b)=>b. Then f is a.c. [2, Example 2.1]. Moreover, it
is easy to check that ¢ is continuous and hence a.c. But, by Example
2.3 of [2], g0 f is not a.c.

The above example shows that the composition of an a.c. mapping
and a continuous mapping is not always a.c. While, we have the fol-
lowing lemma.

Lemma 2. Let X, Y and Z be three spaces. If a mapping f: X
—Y isa.c. and a mapping g: Y—Z is almost-open and a.c., then go f:
X—Z is a.c.

Proof. Let W be an arbitrary regularly open set of Z. Then by
Lemma 1 g~Y(W) is regularly open in Y because g is almost-open and
a.c. Since f is a.c., fUg '\(W)I=(go f)~(W) is open in X. Hence
gofisa.c.

4, Almost.continuous mappings and product spaces. Let
{X.lael} and {Y,|a € I} be two families of spaces with the same set /
of indices. We shall simply denote the product spaces II{X,|« eI}
and II{Y ,|a e I} by IIX, and IIY, respectively.

Theorem 1. Let f,: X,—Y, be a mapping for each acl and
fiIIX —ITY , a0 mapping defined by f((x,)=(f.(x,) for each point (x,)
n I1X,. Then, f is a.c. if and only if f, is a.c. for each a e 1.

Proof. For the sufficiency, see Theorem 2.10 of [2]. We shall
prove the necessity. Foreachacl, let p,: IIX,—X, and q,: IY,—Y,
be the projections. Then, by the definition of f, we have q,0 f=f,0p,
for each « ¢ I. Since q, is continuous open and f is a.c., by Lemma 2,
Q.o fisa.c. Inorderto provethat f, is a.c., we suppose that V, is an
arbitrary regularly open set in Y,. Then (f,op) (V) =(q.o ) (V)
is open in IIX,. Since p, is open and surjective, pI(f,op) (V)]
=f;(V,) is open in X,. Hence f, is a.c. for each ¢ I.

Theorem 2. A mapping h: X—IIX, is a.c. if and only if p,oh is
a.c. for each a € I, where p, is the projection of I1X, onto X,.

Proof. Necessity. Suppose that 2 is a.c. Then, by Lemma 2,
p.oh is a.c. for each « ¢ I because p, is open and continuous.
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Suffictency. Suppose that p,oh is a.c. for each acI. Let x be
any point in X and V any neighborhood of 4(x) in I7X,. Then there
exists an open set IIV,in IIX, such that h(x) e IV ,CV, V., =X, for
all & e I except a finite number of indices, say, a;, o, - - -, @y, and V, is
an open set in X,, where ¢=1,2,---,n. Since p,oh is a.c. for each
a €1, for each ¢ there is a neighborhood U,, of x such that (p,, - R)(U,,)
CIntClV,. Since we have h(N~,U.)C N0z [®@,0R0)U,)]
CNp; [Int C1V,,], by Lemma 2 of [1], we obtain that (N, U,)
CIntCl1IV,CIntClV. Being N, U,, a neighborhood of z, & is a.c.
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