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Department of Mathematics, Osaka University

(Comm. by Kdsaku YOSIDA, M. J. A., March 12, 1974)

Introduction. Let L=20/dt+ip(x)a(t)d/0x be a first order linear
partial differential operator with two independent variables in an open
rectangle 2=(a,b)X(a, HCRLXR}, —c0=<a<b<+ 00, —coZa<0<B
< +oo. In this paper we construct a parametrix of L in some weak
sense and consider the regularity of the solution of the equation,

0.1 Lu=f in Q,

under the assumptions that

0.2) ¢ € C~((a, b)), and all derivatives of ¢ are bounded,

©.3) ceC>((a, B)), c(®)=0 in (@, B, and zeros of ¢ are all of finite
’ order.

Equation (0.1) is locally solvable in £ under these assumptions (cf. [1],

[4]), but is not hypoelliptic in general (cf. [6]). In §4 it will be seen

how the regularity, with respect to ¢, of the solution % of (0.1) in-

creases.

§ 1. Outline of the construction of a parametrix. We consider
the solution of the form

_ 1 o ("
(1.1) w(x, t)= e f exp (1& L a(s)ds)v(x, &)de.
Calculating formally, we have

12 Lu=9® j exp (z's j a(s)ds)(svw, &)+ §(2)3 [0zv(w, &))de.
2r 0

Remark that if ¢(£)>0 in («, p
1.3) gt)= %? exp (is j: a(s)ds)(j exp (—ié j: o(s)ds)g(t’)dt’)de

for every g € Cy((«, ). Then, we can expect that when the solution v
of the equation

(1.4 &, &) +@)d/dwv(@, &)= j exp ( —it j a(s)ds) F, )t
0
is substituted in the right-hand side of (1.1) u(x, t) will give a solution
of (0.1).
§ 2. Preliminary lemmas. We state two lemmas for the con-

struction of a parametrix of L without proof.
Lemma 2.1. Let ¢ satisfy (0.2). We consider the equation
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@.1) &v(x) + d(x)d/dxv(x)= f(x) in (a, D)
with & a real parameter. Then, for every positive integer j, there ex-
ists a constant C,>0, such that for |£|>C; we can find a linear mapping
S, : Ci**((a, b))—C?((a, b)) having the following properties:
2.2) ES.f+od/dxS.f=f in (a, ),
(2.3) ¢d/dxS. f=S.(¢d/dx[),

When S, f is considered as a function of (x,&), 9%/0x?S.f is in-
(2.4) finitely differentiable with respect to & in |&|>C; for 0<p=7j,

and continuous in (a, b) X {£]|&|>C,}.
Furthermore, the following two inequalities hold with a constant C in-
dependent of f, for every non negative integer N :
(2.4.1) |97V /0&¥o7 [ox?S, f(x)|SC(A &)~V s;ugb os;g |8% )8 f ()]

a<z yd

2.4.2) r |9 | 0EN 0P [0a?S, £ () o < C(1 4| )~ - Jb ST |dt datf (@) P
a a 0slsp

fO’I" f € Cg+l((a’ b))’ l'§|> Cj’ a/nd Oépéj'

Proof is omitted, but we give the explicit expression of S, f.

Set M={z € (a, b) | #(x)=0} and decompose (a, b)\M into a disjoint union

of open intervals (a,,0,),c,. We define S, f in the form,

—1—f(x) (@e M)

2.5 S.f(@)= k(x Y, 8)—>— e )f(y)dy (¢, &£ have the same sign, x ¢ I,)

I k(x,y,8)—— o )f(:!/)dy (otherwise)

where k(x, J, £)=exp (& j & ) and I,=(a,,b,).

Now we introduce some notations. For every f e L'((a, f)) we define
Tf(&) as follows.

B8 ¢
2.6) T7(E) =f exp (—'55 L o(s)ds) f@®dt.
For f e L'(R}) we define
@7 0 =j exp (ie j 0 a(s)ds) FEde  a<t<p.

Lemma 2.2. i) Let K be any compact subset of (a,p). For
>0, we have with a constant C depending only on K and &

@.9) TFOFSCA+ED® 147 pat

where f e Cyx((a, B)={g9 € C;((a, p)) |supp gC K}, |&[>1, and A~ is the
pseudo-diff erential operator with symbol (L1 +|&[)~*2.
ii) Denoting by ly the maximum of the orders of zeros of ¢ in K,
we have with a constant C depending only on K
2.9) [TFOI=CA+[ED~YE=*D gup (@) [+ @)
for f e Cixl(a, ), and |&]>1.



198 T. AKAMATSU [Vol. 50,

iii) With the same K, lg, and C as in ii) we have
(2.10) fK I Tf(t) fdt<C I | FOPA+]|& i ixtbge JeLRY,|&|>1.

§ 3. Construction of a parametrix. We introduce some notations
Hoo={F e SEBXRD||F o= QHIERY W+ (2P |/ 0 Pdde <+ oo},
H D) ={f e DD|of ¢ H,, for every w e C;(Q)},

H, (=& NH,,,
H)  x(Q)={f e H} (2)|t-projection of supp fCKc(a, p} wherer, s are
any real numbers.

Theorem 3.1. Let L and 2 be as in §0, and assume that (0.2)

and (0.3) hold. Then, for every positive integer j, there exist linear
mappings E;, R;, and R/

3.1 E;: H) ((Q—H(2)

3.2) R;: H) (QD)—HY{2)for any real numbers r, s, §
3.3 R} : H) (D)—HYY2)

having the following properties:

(3.4) LE,f=f+R,f nQ feHQ).

3.5) E,Lf=f+R,f in Q2 for feH;\2) suchthat Lf e Hj ().
Take any o € C3(2) and denote by 1, the maximum of the orders

of zeros of g in the t-projection of supp w. For0<s< -;—(1 +1,)71,

(3.6) and any compact set K in (a, p) we have, with a constant C in-
dependent of f
108027 E oo SC (| fllp-s S € Hbox(@), 0ZpP=i.
3.7 Let K and o be as in (3.6), then we have with a constant C in-

dependent of f
Hijf“r,§§CHf\|r,s} 0
JoR, A= C £l & Hrex®-
Proof. We define E;, R;, and R/ only for f e C;(2). The exten-
sion to the general f can be performed using the approximation by
mollifier. Choose a function yx;(&)eC~(R}) such that y,(&)=0
(&]£2C;+1), and x;(&)=1 (£|=3C;+ 1), where C, is the constant ap-
pearing in Lemma 2.1. From now on in this proof we drop the sub-
script 7. Now define the operators U and E by the formula

38  US@ =1 [exp (it [ awas)rc., ratr@
3.9 Ef(, t)=§%—jexp (i o(5)ds Uz, )ds

where f e C3(2).

From Lemma 2.1 (2.4.1) and Lemma 2.2 (2.9) we see that (3.9) is well
defined, and E'f is continuously differentiable with respect to x up to
the order j. Furthermore we can write
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3.10) 2/ow?Ef(x, )= [exp <i$ J‘ o(s)ds)ap J9xPUf (2, &)de
271 0

O=p=7.
Applying Lemma 2.2 (2.10), Lemma 2.1 (2.4.2), and Lemma 2.2 (2.8)
successively to (3.10), we obtain (3.6) for f e C3(£2). Onthe other hand,
when f vanishes near zeros of g, E f is continuously differentiable with
respect to ¢ also, and we can write using Lemma 2.1 (2.2) and Fourier
inversion formula
LEf(x,t)=f(z,1)

" Gz(? [[exp (ie | ods)aue)~nre, trarde.

For a general f ¢ Cy(2), approximating it in L*-norm by functions as
above with supports contained in a common compact set in 2, we see
that (8.11) also holds for it. Now define R and R’ as follows:

G.12) Rf@ =0 [[exp (it o@ds )o@ — 1@, tavas

3.18) Rf(, D) =% ” exp <i5 L a(s)ds)(x(s) — ) f @, )ot)de de.

Then, (3.4) holds for f e Cy(2). (3.5) can be proved in a similar way.
Finally, inequalities in (3.7) follow easily from definitions (3.12) and
(8.13). Q.E.D.

§ 4. L’.estimate. Lemma 4.1. Let E; be the parametriz con-
structed in Theorem 3.1. If f e H{ (2) and (¢9/9%),f € Hf (2) (0=<p=7)
we can write
or |0t E , f =1§§S}pap,k(t)E (g2 /8x)* f)

> 0p,n(®)0Y0tU (g [ 0x)™(f + R, f)

0=l+m=p-1

where a, 1, 0p,1,m € C((a, B)) are appropriate functions independent of f.

Proof. This can be proved by induction on p using Lemma 2.1
(2.3) and Theorem 3.1 (3.4). Q.E.D.

Lemma 4.2. Let E; be as in the above lemma. Choose any func-
tions w,d e Cy(Q) such that 3=0 near supp w, and fix any integer p
such that 0<p<j. Then, oE;f)e H, , for any positive integer q if
S e H(2), and we have with a constant C independent of f
4.2) 0B @ lpS 0 o f € HE(D.
Proof is omitted.

Theorem 4.3. Let I,J be non negative integers. Assume that
u, (¢0/0x)*(Lw), and o'/ot'(¢o/ox)™(Lu) € HY(2) for 0<k<J and 01
+m<J—1, then ue HY(2). Take any two functions w, d € Cy(2) such
that @=1 near supp o, and let l, be the number defined in Theorem 3.1

(3.11)

4.1

(8.6), then, for every positive integer N and 0<9 <% (lp,+1), we have

with a constant C independent of u
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ol <C( 3 169/00"@N e, o+ _ 3 1@/38)" @)l

4.3)
+||(La»)unz,o+||wunz,-N)

where f=Lu.
Proof. Using Theorem 8.1 (3.5) with j=1I, we can write
“.4) ou=wkE(@f)+ oF ;(Lé)u) —oR}(@u).
Hence (4.3) follows from Theorem 3.1 (3.6), (8.7) and Lemmas 4.1, 4.2.
Q.E.D.
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