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105. The Hurewicy Isomorphism Theorem on Homotopy
and Homology Pro-Groups

By Kiiti MORITA
(Comm. by Kenjiro SHODA, M. J. A., Sept. 12, 1974)

§1. Introduction. Let (X, A, x,) be a pair of pointed topological
spaces. Let {II,|2¢€ 4} be the family of all locally finite normal open
covers of X such that each 11, has exactly one member containing x,.
Then we have an inverse system {(X,, 4;, 2,),[0..1, 4} in the pro-cate-
gory of the homotopy category of pairs of pointed CW complexes by
taking the nerves of 1, and U,N A, by ordering 4 by means of refine-
ments of covers, and by taking the homotopy classes of canonical pro-
jections. We call this inverse system the Cech system of (X, A4, x,).
The Cech system of (X, A) is defined similarly by using all locally finite
normal open covers of X.

We define the n-th (Cech) homotopy pro-group =,(X, A, x,) to be a
pro-group {nn(Xu Au xoz), ﬂn(pu')a A)} (%_Z 2) H 771(X» A’ xo) :{7:1(X19 Av xoa),
7, (p,1), A} is considered as a pro-object in the category of pointed sets
and base-point preserving maps.

The n-th (Cech) homology pro-group H,(X, A) with coefficients in
the additive group of integers is defined similarly by using the Cech
system of (X,A4). Since {II,|2¢€ 4} described above is cofinal in the
family of all locally finite normal open covers of X, the inverse system
{H(X,,A), H,(p;;-), A} is isomorphic to H,(X,A) in the category of
pro-groups. Hence, the set of the Hurewicz homomorphisms
D, X, Ay 20 (X, Ay 2)—H (X, A) for Ae A determines a mor-
phism @,(X,A,z): 7,(X,A,x)—H,(X,A) in the category of pro-
groups, which we shall call the Hurewicz morphism.

A subspace A of a space X is said to be P-embedded in X if every
locally finite normal open cover of A has a refinement which can be
extended to a locally finite normal open cover of X. If A is P-embed-
ded in X, {(4;, %o, [y | (A4, Zoi)], 4}, which is obtained from the Cech
system of (X, A, x,), is isomorphic to the Cech system of (4,x,). A
pro-group G={G,, ¢,., A} is a zero-object, G=0 in notation, if G is
isomorphic to a pro-group consisting of a single trivial group, or equiv-
alently, if for each 1 ¢ 4 there is 2’ € 4 with A<’ such that ¢,,,=0.

In this paper we shall establish the following analogue of the
Hurewicz isomorphism theorem.

Theorem 1. Let (X, A, x,) be a pair of pointed, connected, topolo-
gical spaces such that 7,(X, A, x,)=0 for k with 1<k<n (n=1). Then
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H,(X,A)=0 for 1=k=sn. If A is P-embedded in X and n,(4, 2,)=0
then the Hurewicz morphism @, (X, A, z) 7, (X, 4, x)—H, (X, A)
18 an isomorphism.

For the absolute Herewicz isomorphism theorem, its analogue was
proved by K. Kuperberg [2] for compact metric spaces,” and for the
relative Hurewicz isomorphism theorem its analogue was proved by
T. Porter [6] for movable pairs of metric compacta with a certain con-
dition. These results, however, are concerned with the limit groups
of homotopy and homology pro-groups, but they are direct consequences
of our Theorem 1.

§2. Some lemmas. Let & be a category. Let X={X,,p,., 4}
and Y={Y,, q,,., M} be inverse systems (over directed sets) in 8 A map
of inverse systems, or simply a system map, from X to Y consists of
a map ¢: M—/ and a collection {f,|x € M} of morphisms f,: X,,,—Y,
such that for every p, ¢/ € M with <y’ there is 1¢ 4 such that ¢(y),
d()<2 and f,040:=2uuSwPsurr» TWo system maps f={g,f,, M} and
9={¥,9,, M} from X to Y is called equivalent if for each yxc M there
is 2 € 4 such that ¢() <A,y (1) <2 and f,0;:=9.Pyw:» The equivalence
class containing f is denoted by [f]. There is a category whose ob-
jects are inverse systems in  and whose morphisms are equivalence
classes of system maps. It is called the pro-category of & and is de-
noted by pro ().

If A’ is a cofinal subset of 4, then {X,,»,., 4} is isomorphic to
{X;, Pazr» 4’} in pro (8).

Lemma 1. Let (4, <) be a directed set with order <. Let < be
another order in A such that (i) A<A=a<¥, (ii) Yie 4,3pe A: 2<y,
and (iii), 2<¥<p/'<p=>2<pu. Then (4, <) is also a directed set and
any inverse system {X,, ., (4, <)} in & is isomorphic to {X,, Dy,
4, <)} in pro ().

Proof. The first part is obvious. For any iec 4, we choose an
element ¢(2) of 4 so that 2<¢(2), and let us define f;: X,,—X; by f;
=Pw. On the other hand, let us put g,=1:X,-X,. Then
f={¢’fm 4, <)}: {Xv D (/1’ <)}_’{X1’ Dars (4, "<)} and 9= {1’ 9rs (A’
<} X Paws (4y, <D}—{X,, s (4, <)} are system maps, and [f1lg]l=1,
[9llf1=1.

Lemma 2. Let X={X,,p,, 4} and Y={Y,, q,,., 4} be inverse sys-
tems in & over the same directed set A. Suppose that for each 2¢ A
there exists a morphism f,: X,—Y, and for any 2,y € A with 2<pu there
exists ¥, Y,—X, such that

( 1) pl#:,\!/.lp.fp’ fx‘h,‘:th

1) The proof in [4,§6] for topological spaces is incorrect. Our proof of
Theorem 1 is its rectification.
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Then f={1,f,, A} defines a system map from X to Y which induces an
isomorphism in pro (K).
Proof. For «, 2, p,ve 4 such that £ <2<x<y, we have

(2) VeaQay = V@ o =DaV2,Q s

since V,,q,,=DuDxyV="DuaV1,qm ="V, For each 1¢ 4 let us choose
an element «(2) € 4 so that 2<a(2), and define g,: Y,;,,— X, by 9,=v, .-
If 1 <w/<p<vand ¢ <2< <p<y, then by (1) and (2) we have ,,..q,,
=Vl =V Qo =PV ¢, Hence g={a, g,, 4} defines a system map
from Y to X. Since [fllg]l=1 and [¢g][f]=1, this completes the proof
of Lemma 2.

Lemma 3. Let Disrit (X;, Ay, xi)""(X'Hly Ai+1’ xi+1)9 0=i<n, be
continuous maps of pairs of pointed connected simplicial complexes such
that

T Pr1,0) =02 70 (X, Ay T) =701 (K10 Ayrs Tioir)
for 0<k<n. Then thereisa continuous map : (X,, X2U A,, £,)—(X,,
A,,x,) such that
‘l"j:pn,n-l Y TH (Xo’ Aor xo)‘*’(Xn, Am xn)a
where Xk is the k-skeleton of X, and j: (X,, A,, x)—(X,, X2 U A,, ,) 18
the inclusion map. Moreover, if n,(Dy|(Ay 2))=0 and x,(p,| (X, %))
=0, then  can be chosen so that V(X})=x,.

Proof. In what follows, maps are continuous. Assume that
T (D10| (A, £)) =0 and z,(p, | (X, %,))=0. Putting L,=X)xIUX;x0 and
L,=(X:UA)XIUX,x0 for 1<k=<mn, where I=[0, 1], let us construct
maps i : Ly—X,,k=0,1, - - ., n with the following properties.

(38) zx, 0=z for x e X, x,(A)XDCA,;
(4) @, D=z, for ze Xj, (A, xI)CTA,;
(5)  xrlLxy=Dr,k-1xe-1 for k=1;
(6) xlx,1)eA; for xe X%, k=0.

First, let y, be defined over X;x0 by (3). For x ¢ X} let y,(x, t) be
a path from z to x, so that it lies in A4, if x € A). Next, let E' be a 1-
simplex in X, (resp. 4,). Then y, defines a map « from (E'x0U E'x1,
E'x1) to (X, x) (resp. (A, xy)). Since my(py](Xy2))=0 and
(10| (Ao, ) =0, Dy is homotopic in X, (resp. A,) relative to E'x 1 to
a map from E'xXOUE'xI to z,. This homotopy yields an extension g
of py over E' X1 such that p(E'x1)=x, and BE*'XI)CA, if E'CA,.
Hence p,y, is extended to a map y,: L,U X; X I—X, such that X (Xix1)
=z, and y(A;xI)CA,. Then by the homotopy extension theorem y,
is extended over L,U(X;xI)U(A4,XxI) such that y,(4,xI)CA,. Since
L=L,UXixDU(A,xI), the extended map yx, satisfies (4), (5) and (6)
with k=1.

For k=2, suppose that y;_, has been constructed. Let E* be a k-
simplex in X,—A,. Then y;_, induces a map « from (E*x0UE*x]I,
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Etx1,2x1) to (Xe_y, Ax_1,@r_,) Where x e E¥NXJ. Since mu(pyi_1)
=0, Pir_. is homotopic relative to E*x1 to a map from E*x0U E*
xI to A;. This homotopy yields an extension g of py,;_,« over E*x I
such that g(E*x1)cA,. Hence we can find y, satisfying (5) and (6).
Therefore by induction on k we can find y;, satisfying (5) and (6) for all
k with 2<k<n. Here we note that y,(x,1)==, for x e X}.

Finally, by the homotopy extension theorem there is a map 6: X,
xXI—X, suchthat|L,=y,. Letusputy(x)=60(x,1)for xec X,. Then
4 has the desired properties. This proves the second part of Lemma
3.

The first part is proved similarly; it is essentially due to Mardesié
[3].

§3. Proof of Theorem 1. Assume r,(4,2,)=0 and =,(X, A4, x,)
=0. Then by the exactness of the sequence of homotopy pro-groups
(cf. [3], [5]) we have n,(X,x)=0. Hence for each 1€ 4 there is pe 4
which admits a sequence {4, 4, - -+, 4,} in 4 such that 2<2,<... <3,
<pand P, (X Auy o) > (X Adv s Coapy ) ©=0,1, - -+, n—1 satis-
fy the conditions in Lemma 3 (with the subscripts ¢ there replaced by
2). In such a case we write 2<p. Then by Lemmas 1 and 3 the in-
verse system {(X,, 4,, z,), [p.], (4, <)} is isomorphic to the Cech system
of (X, A, x,) and for 2, p € A with 2<p there existsamap¢,,:(X,, X?UA,,
%o, ) (X, A, ) such that p,~¢,7,: (X, A, 2,)—(X,, 4,1, and
6 (X2UA)CA, ¢,(X) =2, where j,: (X,, A, x,)—(X,, X2 UA,, ) is
the inclusion map. Let us now construct the quotient space Y,=X,/X;,
and put B,=(X7UA)/X,; let 9,: (X,, X7UA,, x,)—(Y,, B,, ¥,) be the
quotient map. Then there is a map V,,: (Y,, B,, ¥,,)—(X,, 4,, ;) such
that ¢,,=+,9,. It is to be noted that (Y ,, B,,¥,)=0 for 1<k<mn,
z(B,; ¥,,)=0, and (Y ,, B,) is a pair of connected CW complexes. Thus,
the usual Hurewicz homomorphism

@n+1(Y/n B,n ?/cm) i70(Y,, B, y0p)“’Hn+1(Yp9 B,a)
is an isomorphism. If we put
01p=75n+1(‘l"2y) ° Qn+1(Y,n B/n ?/o,u)_l ° Hn+1(gaj/:) :
Hn+1(X,n A)—-m, (X, AL 20,

then we have

010Dy in(X,, A,u’ Z,) =ﬂn+l(p)p)!

D,.(X,, Ay ) 0 0114=H‘n+1(p1,u)'
Therefore, by Lemma 2, {1, ,,,(X,, A,, 2,), (4, <)} defines an isomor-
phism from {”n+1(X2» A, 00), Thi(D10), (4, "<)} to {Hn+1(Xu A),H, (p;),
(4, <)}. Thus the second part of Theorem 1 is proved.

The first part is proved similarly (but more easily since H,(X,,
X;UA)=0for 1<k<n).
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