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1o Introduction. Gardner, Greene, Kruskal and Miura [1] dis-
covered that the discrete eigenvalues of one-dimensional SchrSdinger
operators L(t)=d/dx+u(x, t) are constants in t while the potential
u(x, t) varies according to the Korteweg de Vries (KdV) equation:
(1.1) ut+6uux+uxxx=O, --cx,t +c,
where the subscripts x, t denote partial differentiations. From this
they gave a method o constructing solutions o the KdV equation by
means of the inverse scattering problem for L(t). Lax [2] presented
a general principle or a amily of seffadjoint operators L(t) to be
unitary equivalent. Applying this principle he gave another proo o
the invariance of the eigenvalues and derived an infinite amily of
equations (higher order KdV equations) that leave the eigenvalues of
L(t) invariant in time. Menikoff [3] gave another criterion for the
invariance of the eigenvalues o L(t), which works in the case when
u(x, t)-- as Ixl-+ c. His basic idea is to associate the eigenvalue
problem or L(t) the ollowing boundary value problem ot parabolic
type:

G=G+u(x,t)G,
lim G(x, y, s t) ---/(x y),

lim G(x, y, s t) 0.

In the class of periodic unctions the author [4] has given another
characterization o an infinite amily oi higher order KdV equations
and presented a constructive method o deriving them.

In this paper, our purpose is to derive an infinite amily o the
(higher order) KdV equations and their conserved densities by means.
o an improved version of the Menikoff’s method. Here we shall con-.
sider the periodic boundary value problems.

2. Invariance of the eigenvalues and derivation of the infinite
family of (higher order) KdV equations. Let u(x, t) be infinitely dif-
erentiable real unctions of x and t in R R and periodic with respect
to x with period 1. Consider the eigenvalue problem with t considered
as a parameter:

L(t)p=+u(x, t)-- --,,
(2.1) (x, t) (x- 1, t),

[(x, t)=(x+ 1, t).
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Then, there exists a complete set of (real) normalized eigenfunctions

(x, t) and eigenvalues 2(t), ]=1,2, ..., counted according to their
multiplicity.

Let G(x, y, s; t) be the fundamental solution of the problem:

(G =L(t)G G+u(x, t)G,
|lim G(x, y,s; t)=$(x-y),

(2.2)
/a(x, y, s; t)-a(x / 1, y, s; t),
"G(x, y, s; t)= G(x+ 1, y, s; t).

Then, we have

(2.3) G(x, y, s; t)=, e-()(x, t)(y, t).

Theorem 1 (Menikoff). The eigenvalues of (2.1) are constants as
t varies if and only if the function u(x, t) satisfies
(2.4) i ut(x, t)G(x, x, s t)dx=O for all sO and t.

Remark 1. The assertion of Theorem I is always valid when the
SchrSdinger operator L(t) has a complete system of eigenfunctions
and eigenvalues.

Theorem 2. As sO, we have the following asymptotic ex-
pansion

(2.5) G(x, x, s; t) s-//P(x, t),
i=O

where P(x, t)is uniquely determined and can be computed explicitly
in terms of u and its x-derivatives of order :<2(i--1) in the following
way"

1 (--1)/(2k--1) !! P+,(x, t),(2.6) P(x, t)=
2/- >_o 2(i k)!

where P. is a coefficient of the polynomial"

(2.7) M()

and
(2k-1)!!--(2k-1)(2k--3),..., 3.1, (-1)!!--1.

In virtue of the periodicity of G(x, x, s;t) with respect to x, we
have

.[i dG(x,x,s; t)/dx.G(x,x,s; t)dx=O s>0.

From this equality and Theorem 2, we obtain

(2.8) .[idP(x,t)/dx.G(x,x,s; t)dx=O, i=0, 1,2, s0.

Hence, we obtain

Theorem :. If u(x, t) evolves according to the equation

(2.9) Ou f(t) P(u, u, u-),
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where u() =u/3x, M is an arbitrary finite positive number and f(t)
are arbitrary smooth functions, then the eigenvalues of (2.1) are con-
stant as t varies.

Exarnples. We have P0=l/2/--, Pl=--u/2/-,
P2:u2 /4+Uxx /12,

and so on. Hence, we have the KdV equation when i=2:

ut + 12 (P2) u+ 6uu+u O.
Now, from (2.3) and (2.5), we get

(2.10) e-(t)s((x, ))2 8-/2+pi(x, )
j=l i=O

from which it ollows that

(2.11) e-( -/* P(, t)dz.
= =o

I u(x, t) satisfies the equation (2.9), then the left hand side is
independent of t. Hence, the quantities

are invariant integrals o the equation (2.9). Therefore Pt are con-
served densities: Thus we have

Theorem 4. The P(u, u(), ., u(-)) are conserved densities of
(2.9) and uniquely determined by the asymptotic expansion (2.10).

Detailed proofs and urther investigations will appear elsewhere.
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