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1. Introduction. Throughout this paper all notations and all
terminologies are the same as in [6] and [7]. Let R be a bounded
Krull prime ring with the non-empty set of minimal non-zero prime
ideals, M(p) say, and let @ be the quotient ring of R. Then R=\Rp
(P € M(p)) and each Rj is a noetherian, local, Asano order in Q. Let
F be any right additive topology. We denote by Ry the ring of quo-
tients with respect to F' (cf. § 7 of [8]). Let F and F” be right additive
topologies of integral right R-ideals. If R,=Rj., then they are said to
be equivalent.

The aim of this paper is to prove the following theorems.

Theorem A. Let P, ---,P, e M(p) and let I, be any right Rp -
ideals 1<i<k). Then there exists a unit x in Q such that xRp =1,
(1<i<k) and x € Rp, for all P, e M(p) with P,+P;.

Theorem B. Let I be any right R-ideal and let a be any regular
element in I. Then there exists an element b in I such that I*=(aR
+bR)*.

Theorem C. Let F be any right additive topology of integral
right R-ideals. Then

Q) If FNM®)=¢, then F*={I|I*=R} is a unique maximal
element in the set of right additive topologies equivalent to F, and
R;=R.

@ If FNM{)+#¢, then F*={I|\I*22Pp...Pw, where P, e F
N M(p)} is a unique maximal element in the set of right additive topolo-
gies equivalent to F. If F(p)=M(p), where F(p)=F N M(p), then Ry
=@, and if M(p) 2F(p), then Rp=("\ Rp (P € M(p)—F(p)).

2. The proofs of Theorems. (a) First we shall prove Theorem
A. To this we let F(p)={P;|1<i<k} and let I=I,N---NI,N N; Rp,
(P;e M(p)—F(»)). Then it is clear that I is a right R-ideal. By
Lemma 2.1 of [5] IRp,=I;and IR,,=Rp,, LetA=P,N-.-NP,. Then
there exists a regular element ¢ in @ such that IR,=cR, by Lemma
8.80f [6land so IRp,=cRp,(1=i<k). Ifce Rp, forall P,ec M(p)—F(p),
then c is an element satisfying the assertion. If ce Ry, for some P,

e M(p)—F(p), then there are only finitely many elements P, - -+, Py
in M(p) such that ce Rp,,, 1=<7<D. Let B=P;,,N.--NP;,;. Then
it follows that Q=1i_1f>1 (P Rg)~" .. (P, ;Rp)~™ by Proposition 1.2,
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Lemma 3.3 of [6]. So there are non-negative integers #,, - - -, n; such
that cCZ Ry, where C=P%,,...P%.,. Letdbe any element in C N C(A4),
which is non-empty by Lemma 3.1 of [6]. If x=cd, then it follows
that 2Ry, =I;, 1<i<k) and z ¢ Ry, for each P, e M(p)—F(p).

(b) Next we shall prove Theorem B. It suffices to prove the
result in case IC R. There are finitely many P,, ..., P, in M(p) such
that aRp,CRp, 1<i<k). Let A=P,N-.--NP,. Then, by Corollary
3.5 of [1], there exists an element b in IR,=aR,+bR,=(R+bR)R,.
Since R, is the quotient ring of R with respect to C(4), we may assume
that bel. It follows that IRp,=(aR+DR)Rp, 1<i<k) and that Rp,
2IRp 2(aR+bR)Rp,=Rp, for each P;e M(p) with P,#P,. SoNIRp
=M (@R+bR)R,(P e M(p)). Hencel*=(aR+bR)* by Proposition 1.10
of [6].

(¢) Finally we shall prove Theorem C.

() First we shall prove that if there exists J ¢ F' such that J*£R,
then F'N M(p) is non-empty. To prove this let I (£R) be any element
in F such that it is a maximal element in F.(R). Then it follows that
I P for some P e M(p) by Lemma 6 of [7]. If P*~'ZIand n>1, then
we have P=(IU*(P"Y*o P=Ioc PU*(P")*CI, a contradiction. Hence
PCI. We shall prove that Pe F. By Lemma 9 of [7], INC(P)=¢.
Let A be any maximal element in the family {L|L2I, LNC(P)=¢, L:
integral right R-ideal}. Then A=A/P is a maximal complemented
right ideal of E=R/P in the sense of Goldie. Further let B (2P) be
any right ideal of R such that B is maximal complemented in E. Then,
by Theorem 8 of [2] and Theorem 8.7 of [8], there exist uniform ele-
ments %, 7 in R such that (0: %),=A4 and (0: 7),=B, that is, A=u"'P
and B=v"'P. By Lemma 8.1 of [4], uR and 7R are subisomorphic.
Further R/A=R/u"'P=(uR+P)/P=uR and R/B=vR. Since AcF,
R/A is F-torsion and so R/B is also F-torsion. Thus we have BeF.
By Theorem 2.8 of [3], 0=4,N .- N4,, where 4, are maximal comple-
mented in R, that is, P=A4,N---NA,. Since A,cF, we get PcF, as
desired.

1) Welet F*={I|I*=R}. Then it is a right additive topology.
If FNM(p)=¢, then FCF* by (x) and Ry=R=Ry.. It isevidentthat
F* ig a unique maximal element in the set of right additive topologies
equivalent to F'.

(2) Let F(p)=FNM(p). First we shall prove that F*={I|I*
2Py... P, P, e F(p)}is a right additive topology. IfIe¢F*andreR,
then we have (#~)* =r~'I* by Lemma 2.3, Theorem 2.6 and Proposition
1.10 of [6]. So it follows that r~'I ¢ F*. IfJ is a right ideal such that
a~'J € F'* for some I ¢ F* and any a e I, then we must prove that J ¢ F*,
If J* 21, then J € F* and so we assume that J*21. It suffices to prove
the result in case J* is irreducible in F,.(R). Let a be any element in
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I but not in J*. Since a~'J ¢ F*, there exist P,, .-+, P, in F(p) such
that o 'WJ*=(a"J)*2Pn...P%, that is (aR)P}...-P%CJ*., Hence
Pr...Py"CJ* by Lemma 6 of [7] and so J ¢ F*. This proves that
F* is a right additive topology. LetP,, ..., P, e F(p). Then itiswell
known that P7...P#* ¢ F so that Rz2Rzm. To prove that FCF*, we
let I be any element in F'. If I*=R, then I ¢ F*, If I*#R and I* is
irreducible in F.(R), then there exist P € M(p) and » such that P*C I*.
Let I, be any maximal elements in F'.(R) such that I,2I* and I,#R.
Since I,2 P*, it follows that P ¢ F'(p) from the proof of (*). Therefore
IeF* If I'* ig reducible, then I*=I,N...NI,, where I, e FNF,(R)
and I, are irreducible. Hence I,2 P for some P, c F(p) so that I*
2Pn...Pw. Therefore I ¢ F* and so FCF*. This implies that Ry
< Ry, and hence we have RF=RF.=EI_1;1 (Pn...P~', where P, e F(p).

By using Theorem B it follows that F'* is a unique maximal element in
the set of right additive topologies equivalent to F. Finally if F(p)
=M(p), then we get Rz=Q by Lemma 1.6 of [6]. Suppose that M(p)
2F(p)+¢. Let P be any element in M(p)—F(p) and let P,, ---, P, be
any elements in F(p). Then (P}*...-P¥~'C Ry by Lemma 11 of [7].
Hence Ry is contained in the ring T=\ Rp (P € M(p)—F(p)). Con-
versely let « be any element in 7. Then there exists an ideal Bp(Z P)
such that 2B, R for any Pe M(p)—F(p). Write B=>, Bp. Then
we have (xR+R)B*Z(xB+B)*C R so that xe B~'. If B*=R, then
zeR. If B¥*#R and if B¥*=(PM)*o ... o (P})*, where P, e M(p), then
P,cF(p). Hence ze B '=(Py...P¥)'CR; and thus we have R
=M Rp (P € M(p)—F(p)).

Corollary 1. Let R be a bounded Krull prime ring and let F' be
any right additive topology consists of integral right R-ideals. Then
Rz is a bounded Krull prime ring, or a simple and artinian ring.
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