3. Abelian Groups and N-Semigroups. II

By Thomas Nordahl California State College, Stanislaus, Turlock, Calif., U.S.A. (Communicated by Kôsaku Yosida, M.J.A., Jan. 12, 1977)

1. Introduction. This note takes its name from the paper [4] by Takayuki Tamura. In that paper Tamura shows the following result:

Theorem 1.1. Let K be an Abelian group and A be the group of integers under addition. If G is an Abelian extension of A by K with respect to factor system $f: K \times K \rightarrow A$, then there exists a factor system g such that

- (i) $g(\alpha, \beta) \ge 0$ for all α, β in K
- (ii) g is equivalent to f.

There needs to be a slight change in the proof. Define a new function δ' by $\delta'(\varepsilon) = 0$ and $\delta'(\alpha) = \delta(\alpha)$ if $\alpha \neq \varepsilon$. Let $g(\alpha, \beta) = f(\alpha, \beta) + \delta'(\alpha) + \delta'(\beta) - \delta'(\alpha\beta)$.

In his paper Tamura asks if A in Theorem 1.1 can be replaced by an ordered Abelian group. We shall show that A can be replaced by any subgroup of the additive reals. Alternatively we shall show that A can be an Archimedean ordered Abelian group, as an Archimedean ordered Abelian group is isomorphic to a real semigroup.

2. Preliminary results. Let A be a subgroup of the reals under addition. Let G be an Abelian group containing A. Let S be an N-subsemigroup (see [4]) of G which contains $A^+ = \{x \in A : x > 0\}$ such that G is the quotient group of S. We call A^+ positive cone of A. Let $G = \bigcup_{\varepsilon \in G/A} A_{\varepsilon}$ be the decomposition of G into cosets modulo A. Let $x \in A_{\varepsilon}$, some arbitrary coset of G, then $x = bc^{-1}$ for some $b, c \in S$. Let $a \in A^+ \subset S$. As S is Archimedean there exists positive integer m and some $d \in S$ such that $cd = a^m$. Thus xc = b implies $xa^m = xcd = bd \in S$. Note that as $x \in A_{\varepsilon}$ and as $a^m \in A$ we have $xa^m \in A_{\varepsilon}$ and so $S \cap A_{\varepsilon} \neq \emptyset$.

Proposition 2.1. Let A be a subgroup of the reals under addition and G be an Abelian group containing A. Let S be an N-subsemigroup of G which contains A^+ . The following are equivalent:

- (i) G is the quotient group of S.
- (ii) G=AS.
- (iii) S intersects each congruence class of G modulo A.

Proof. We have shown that (i) implies (iii). For any commutative cancellative semigroup T, we let Q(T) denote the quotient group of T. If G=AS then as $A^+ \subset S$ we have $A=Q(A^+) \subset Q(S)$ and so G=AS

 $\subset Q(S)$. It follows that (ii) implies (i). Suppose S intersects each congruence class of G modulo A. Let A_{ξ} be an arbitrary congruence class of G modulo A and let $x \in S \cap A_{\xi}$. Note that $A_{\xi} = Ax \subset AS$. This is true for each $\xi \in G/A$ and so G = AS. We thus have (iii) implies (ii).

For any Abelian group T we shall let D(T) denote the divisible hull of T.

Proposition 2.2. Let G be an Abelian group which contains A, a subgroup of the additive reals. There exists an N-subsemigroup S of G containing A^+ such that G is the quotient group of S.

Proof. As the additive group of reals is divisible we have that D(A) is a subgroup of the reals. It is well known from group theory [2] that a divisible subgroup of a group is a direct summand and so $D(G)=D(A)\oplus L$ for some Abelian group L. Let $S^*=D(A)^+\oplus L$. S^* is an N-semigroup which contains A^+ . Let $S=S^*\cap G$. S contains A^+ as $A^+\subset S^*$ and $A^+\subset G$. Let $\pi:D(G)\to D(A)$ be the projection homomorphism. Let $a\in A^+\subset D(G)$, then $\pi(a)>0$. Let $x\in G$. There exists a positive integer n such that $n\pi(a)+\pi(x)>0$ and so $\pi(na+x)>0$. Hence $na+x\in G\cap (D(A)^+\oplus L)$ implying that $na+x\in S$. Hence $G\subset A+S$ and so G=A+S. By Proposition 2.1 G is the quotient group of G. Let G and some positive integer G and some G we have G and some positive integer G and G are G we have G and some positive integer G as G and G are G and some positive integer G as G and G are G and some positive integer G as G and G are G are G and some positive integer G as G and G are G are G and some positive integer G as G and G are G and some positive integer G as G and G are G and G are G and some positive integer G as G and G are G are G and G are G and G are G are G are G and G are G and G are G are G and G are G are G are G and G are G and G are G are

Remark 2.3. In Proposition 2.2, any N-subsemigroup S of G containing A^+ satisfies $S \cap A = A^+$.

Proof. This follows as S is idempotent free.

3. Applications to Abelian group theory.

Theorem 3.1. Let K be an Abelian group and A be a subgroup of the reals under addition. If G is an Abelian extension of A by K with respect to a factor system $f: K \times K \rightarrow A$, then there exists a factor system g such that

- (i) $g(\alpha, \beta) \ge 0$ for all $\alpha, \beta \in K$ and
- (ii) g is equivalent to f.

Proof. By the assumption, let $G = \{(m, \alpha) : \alpha \in K, m \in A\}$ in which $(m, \alpha)(n, \beta) = (m+n+f(\alpha, \beta), \alpha\beta)$. Let e be the identity of K. We identify A^+ and $\{(x, e) : x \in A^+\}$. By Proposition 2.2 there is an N-semigroup S containing A^+ such that G is the quotient group of S. By Remark 2.3 $S \cap A = A^+$. Let $\xi \in K$. Suppose there exists a collection $\{(x_n, \xi)\}_{n=1}^{\infty}$ of elements of S such that $x_n \to -\infty$. Let $(y, \xi^{-1}) \in S$. Note that such an element exists as S intersects each congruence class of G modulo A. For each positive integer n, $(x_n, \xi)(y, \xi^{-1}) = (x_n + y + f(\xi, \xi^{-1}), e) \in S \cap A = A^+$. This is a contradiction as $x_n + y + f(\xi, \xi^{-1}) \to -\infty$. For

each $\alpha \in K$ we can thus define $\sigma(\alpha) = \inf \{x : (x, \alpha) \in S\}$. Note that $\sigma(e) \neq 0$ if and only if A is isomorphic to the group of integers. This case has been treated by Tamura. Thus we may assume that A is not isomorphic to the group of integers and so $\sigma(e) = 0$. Let $\{(x_n, \alpha)\}$, $\{(y_n, \beta)\}$ be subsets of S such that $x_n \to \sigma(\alpha)$ and $y_n \to \sigma(\beta)$. Then for each positive integer n, $(x_n + y_n + f(\alpha, \beta), \alpha\beta) \in S$. It follows that for each positive integer n we have $x_n + y_n + f(\alpha, \beta) \geq \sigma(\alpha\beta)$ and so $\sigma(\alpha) + \sigma(\beta) + f(\alpha, \beta) \geq \sigma(\alpha\beta)$. Let $\sigma(\alpha, \beta) = \sigma(\alpha, \beta) + \sigma(\alpha) + \sigma(\beta) = \sigma(\alpha\beta)$ for every $\sigma(\alpha, \beta) = \sigma(\alpha, \beta$

References

- [1] Clifford, A. H., and G. B. Preston: The Algebraic Theory of Semigroups, Vol. 1. Amer. Math. Soc. Providence, Rhode Island (1961).
- [2] Kaplansky, I.: Infinite Abelian Groups. The University of Michigan Press, Ann Arbor (1968).
- [3] Tamura, T.: Commutative nonpotent Archimedean semigroups with Cancellation law. Jour. Gakugei, Tokushima Univ., 8, 5-11 (1957).
- [4] —: Abelian groups and N-semigroups. Proc. Japan Acad., 46, 212-216 (1970).