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1. Introduction. This note takes its name from the paper [4]
by Takayuki Tamura. In that paper Tamura shows the following
result"

Theorem 1.1. Let K be an Abelian group and A be the group of
integers under addition. If G is an Abelian extension of A by K with
respect to factor system f" K K-.A, then there exists a factor system
g such that

( ) g(a, ) >_ 0 for all , fl in K
(ii) g is equivalent to f

There needs to be a slight change in the proof. Define a new function

’ by ’(D=O and ’()=() if c:/:. Let g(,/3)=f(,/)+’()+’(/)
-’(./).

In his paper Tamura asks if A in Theorem 1.1 can be replaeed by
an ordered Abelian group. We shall show that A can be replaeed by
any subgroup of the additive reals. Alternatively we shall show that
A ean be an Arehimedean ordered Abelian group, as an Arehimedean
ordered Abelian group is isomorphic to a real semigroup.

2. Preliminary results. Let A be a subgroup o the reals under
addition. Let G be an Abelian group containing A. Let S be an N-
subsemigroup (see [4]) of G which contains A/= {x e A" x> 0} such that
G is he quotient group of S. We call A / positive cone of A. Let G
-----_Jea/a A be the decomposition of G into eosets modulo A. Let x e A,
some arbitrary eoset of G, then x= be- for some b, e e S. Let a e A/

cS. As S is Arehimedean there exists positive integer m and some
d e S such that ed=a". Thus xc=b implies xa=xed=bd e S. Note
that as x e A and as a e A we have xa e A and so S

Proposition 2.1. Let A be a subgroup of the reals under addition
and G be an Abelian group containing A. Let S be an N-subsemigroup

of G which contains A+. The following are equivalent"
( ) G is the quotient group of S.
(ii) G--AS.
(iii) S intersects each congruence class of G modulo A.
Proof. We have shown that (i) implies (iii). For any commuta-

tive cancellative semigroup T, we let Q(T) denote the quotient group
of T. If G AS then as A+ S we have A Q(A/) Q(S) and so G-AS
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Q(S). It follows that (ii) implies (i). Suppose S intersects each con-
gruence class of G modulo A. Let A be an arbitrary congruence class
of G modulo A and let x e SA. Note that A--AxAS. This is
true for each e G/A and so G-AS. We thus have (iii) implies (ii).

For any Abelian group T we shall let D(T) denote the divisible
hull of T.

Proposition 2.2. Let G be an Abelian group which contains A,
a subgroup of the additive reals. There exists an N-subsemigroup S
of G containing A + such tha G is the quotient group of S.

Proof. As the additive group of reals is divisible we have that
D(A) is a subgroup of the reals. It is well known from group theory
[2] that a divisible subgroup of a group is a direct summand and so
D(G)=D(A)L for some Abelian group L. Let S*=D(A)/qL. S* is
an N-semigroup which contains A /. Let S--S* G. S contains A/

as A / S* and A / G. Let " D(G)-.D(A) be the projection homo-
morphism. Let a e A/ D(G), then =(a) 0. Let x e G. There exists
a positive integer n such that n(a) +(x) 0 and so z(na+ x)0.
Hence na+ x e G (D(A)/L) implying that na+ x e S. Hence GA
+S and so G=A +S. By Proposition 2.1 G is the quotient group of
S. Let x, y e S. As S* is Archimedean we have mx=y+ z for some
zeS*and some positive integer m. As x, yeG we have zeG. As
z e S* G--S, S is Archimedean. S is thus an N-subsemigroup of G,
containing A/, whose quotient group is G.

Remark 2.3o In Proposition 2.2, any N-subsemigroup S of G
containing A + satisfies S A A/.

Proof. This follows as S is idempotent free.
3. Applications to Abelian group theory.
Theorem 3.1. Let K be an Abelian group and A be a subgroup

of the reals under addition. If G is an Abelian extension of A by K
with respect to a factor system f K K-.A, then there exists a factor
system g such that

( ) g(a, )

_
0 for all , e K and

(ii) g is equivalent to f
Proof. By the assumption, let G= {(m, a) a e K, m e A) in which

(m, a)(n, )=(m+n +f(a, fl), a). Let e be the identity of K. We
identify A+ and {(x, e):x e A+}. By Proposition 2.2 there is an N-
semigroup S containing A / such that G is the quotient group of S. By
Remark 2.3 S A =A/. Let e K. Suppose there exists a collection

{(x, )}o_ o elements of S such that x-*--oo. Let (y, -)e S. Note
that such an element exists as S intersects each congruence class of G
modulo A. For each positive integer n, (x, )(y, -x) =(x+ y+f(,-), e)
e S A=A+. This is a contradiction as x+ y+f(, -)-*- oo. For
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each e K we can thus define a()=inf {x" (x, ) e S}. Note that a(e)
:/= 0 if and only if A is isomorphic to the group of integers. This case
has been treated by Tamura. Thus we may assume that A is not iso-
morphic to the group of integers and so a(e)=O. Let {(x, )}, {(y, )}
be subsets of S such that xa(o) and ya(). Then for each positive
integer n, (x-F-y/f(o, ), o)e S. It follows that for each positive
integer n we have x+y+f(, )_>a() and so a() + a() /f(, )
:>a(). Let g(, )--f(, )+a(o)+a()--a(o) for every , e K. We
see that g is a factor system which is equivalent to f and g(a, )_> 0 for
all a, e K.
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