17. The Monodromy Group and the Reducibility Conditions of the One Dimensional Section of Appell's Hypergeometric Equation for $\boldsymbol{F}_{3}\left(\alpha, \alpha^{\prime}, \beta, \beta^{\prime}, \gamma ; \boldsymbol{x}, \boldsymbol{y}\right)$

By Takao SAsAi
Department of Mathematics, Tokyo Metropolitan University (Communicated by Kôsaku Yosida, m. J. A., March 13, 1978)

In this paper we announce certain results on the monodromy group and the reducibility conditions of the one dimensional section of the system of partial differential equations for Appell's hypergeometric function F_{3} :

$$
\begin{equation*}
\sum_{k=0}^{4} A_{4-k}(t) \frac{d^{k} x}{d t^{k}}=0 \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
A_{0}= & t^{2}(t-1)(t-c), \\
A_{1}= & t\left[\left(2 \gamma-\alpha^{\prime}-\beta^{\prime}+3\right)(t-1)(t-c)+(\alpha+\beta-\gamma+3) t(t-c)\right. \\
& \left.+\left(\alpha+\beta+\alpha^{\prime}+\beta^{\prime}+2-\gamma\right) t(t-1)\right], \\
A_{2}= & {[(\alpha+\beta+3) t-(\gamma+1)]\left[(\alpha+\beta+3) t+\left(\alpha^{\prime}+\beta^{\prime}-\gamma-1\right) c\right] } \\
& +t(t-c)(2 \alpha \beta+3 \alpha+3 \beta+5)+(c-1)(\alpha+1)(\beta+1) t+\alpha^{\prime} \beta^{\prime} c, \\
A_{3}= & (\alpha+1)(\beta+1)\left[(2 \alpha+2 \beta+4) t+\left(\alpha^{\prime}+\beta^{\prime}-\gamma-1\right) c-\gamma\right], \\
A_{4}= & \alpha \beta(\alpha+1)(\beta+1),
\end{aligned}
$$

and $c \neq 0,1$. This equation was first studied by Goursat [2], more precisely, see [1], p. 72 and p. 87 . We can rewrite it in the following form :

$$
\begin{equation*}
(t I-B) \frac{d x}{d t}=A x \tag{2}
\end{equation*}
$$

where I is the unit matrix of degree $4, A=\left(a_{i j}\right)$ and the diagonal matrix $B=\operatorname{diag}(0,0,1, c)$ are 4 by 4 constant matrices:

$$
\begin{aligned}
& a_{11}=\alpha^{\prime}-\gamma+1, a_{22}=\beta^{\prime}-\gamma, a_{33}=\gamma-\alpha-\beta-1, a_{44}=\gamma-\alpha-\beta-\alpha^{\prime}-\beta^{\prime}, \\
& a_{12}=a_{21}=0, a_{13}=a_{14}=-a_{32}=a_{42}=1, \\
& a_{23}=\frac{\alpha^{\prime}}{\alpha^{\prime}-\beta^{\prime}+1}\left(\alpha+\beta^{\prime}-\gamma\right)\left(\beta+\beta^{\prime}-\gamma\right), a_{24}=\frac{\beta^{\prime}-1}{\alpha^{\prime}-\beta^{\prime}+1}\left(\alpha+\beta^{\prime}-\gamma\right)\left(\beta+\beta^{\prime}-\gamma\right), \\
& a_{31}=\frac{\beta^{\prime}-1}{\alpha^{\prime}-\beta^{\prime}+1}\left(\alpha+\alpha^{\prime}-\gamma+1\right)\left(\beta+\alpha^{\prime}-\gamma+1\right), a_{34}=\beta^{\prime}-1, \\
& a_{41}=-\frac{\alpha^{\prime}}{\alpha^{\prime}-\beta^{\prime}+1}\left(\alpha+\alpha^{\prime}-\gamma+1\right)\left(\beta+\alpha^{\prime}-\gamma+1\right), a_{43}=-\alpha^{\prime},
\end{aligned}
$$

and $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is a 4 -vector. In fact, eliminating the components x_{2}, x_{3} and x_{4} and replacing x_{1} by x, we obtain the equation (1).

From now on we only consider the system (2). It is a Fuchsian differential equation with four regular singular points $t=0,1, c$ and ∞ the Riemann sphere S^{2}. The characteristic exponents are ($\alpha_{11}, a_{22}, 0,0$) at $t=0,\left(0,0, a_{33}, 0\right)$ at $t=1,\left(0,0,0, a_{44}\right)$ at $t=c$ and $(-\alpha,-\alpha,-\beta,-\beta)$ at $t=\infty$. We note that $-\alpha$ and $-\beta$ are two eigenvalues of the matrix A with the common multiplicity 2. In this case Fuchs' relation is merely the invariance of the trace of A.

Theorem 1 (Fuchs' relation). $\quad-2(\alpha+\beta)=\sum_{j=1}^{4} a_{j j}$.
Now we assume that none of the quantities $a_{j j}(j=1,2,3,4), a_{j j}$ $-a_{k k}(j \neq k), \alpha, \beta$ and $\alpha-\beta$ is an integer. Consequently there is no logarithmic solution.

Under these circumstances we can prove
Theorem 2. The system (2) is accessary parameter free.
Theorem 3. The system (2) has only four singular solutions defined at three finite singular points $t=0,1$ and c, corresponding to the characteristic exponents $a_{j j}$ and the normalization conditions $g_{j}(0)=\varepsilon_{j}$:

$$
X_{j}(t)=\left(t-t_{j}\right)^{a_{j j}} \cdot \sum_{m=0}^{\infty} g_{j}(m) \cdot\left(t-t_{j}\right)^{m} \quad(j=1,2,3,4)
$$

where the j-th component and the others of the 4 -vector ε_{j} are 1 and 0 , respectively, and $t_{1}=t_{2}=0, t_{3}=1$ and $t_{4}=c$.

The formula of the following type was first investigated by Okubo [3] which is an extension of Gauss' formula in the theory of the classical hypergeometric equation. With a slight modification of Okubo's proof, we obtain

Theorem (Okubo) 4. In any simply connected domain contained in $S^{2}-\{0,1, c, \infty\}$, the Wronskian of the above solutions is

$$
\operatorname{det} X=\frac{\prod_{j=1}^{4}\left(t-t_{j}\right)^{a_{j j}} \cdot \Gamma\left(a_{j j}+1\right)}{[\Gamma(1-\alpha) \cdot \Gamma(1-\beta)]^{2}},
$$

where X is the matrix $\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$, from which the linear independence of the solutions follows.

Now we consider the monodromy group with respect to the basis X. First we fix a base point t_{0} in $S^{2}-\{0,1, c, \infty\}$. Let $\mu_{j}(j=1,3,4)$ be a simple loop which start at t_{0}, go around t_{j} once in the positive direction and return to t_{0}. We may choose t_{0} and μ_{j} in such a way that the composition $\mu_{\infty}=\mu_{1} \cdot \mu_{3} \cdot \mu_{4}$ is a simple loop surrounding $t=\infty$ in the negative direction, where $\mu_{k} \cdot \mu_{j}$ is the loop μ_{j} followed by μ_{k}. The loops $\left\{\mu_{j}\right\}$ generate the fundamental group $\pi\left(S^{2}-\{0,1, c, \infty\}, t_{0}\right)$. If we continue analytically the basis X along μ_{j}, X is transformed into $X M_{j}$, where M_{j} is an element of $G L(4, C)$ and is called the monodromy matrix. As is well-known, $M_{j}(j=1,3,4)$ generate the monodromy group of the system (2).

Finally we state the two main theorems. Let e_{i}, f_{1} and f_{2} be $\exp \left(2 \pi i a_{j j}\right), \exp (-2 \mu i \alpha)$ and $\exp (-2 \pi i \beta)$, respectively.

Theorem 5. M_{j} can be determined as follows.

$$
\begin{aligned}
& M_{1}=\left(\begin{array}{cccc}
e_{1} & 0 & \frac{e_{2}\left(e_{1}-f_{1}\right)\left(e_{1}-f_{2}\right)}{f_{1} f_{2}\left(e_{1}-e_{2}\right)} & \frac{\left(e_{1}-f_{1}\right)\left(e_{1}-f_{2}\right)\left(e_{1} e_{3}-f_{1} f_{2}\right)}{e_{1} e_{3}\left(e_{2}-e_{1}\right)} \\
0 & e_{2} & \frac{e_{1}\left(e_{2}-f_{1}\right)\left(e_{2}-f_{2}\right)}{f_{1} f_{2}\left(e_{2}-e_{1}\right)} & \frac{\left(e_{2}-f_{1}\right)\left(e_{2}-f_{2}\right)\left(e_{2} e_{3}-f_{1} f_{2}\right)}{e_{2} e_{3}\left(e_{1}-e_{2}\right)} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
M_{3} & =\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\frac{e_{2} e_{3}-f_{1} f_{2}}{e_{2}} & \frac{e_{1} e_{3}-f_{1} f_{2}}{e_{1}} & e_{3} & \left(e_{1} e_{3}-f_{1} f_{2}\right)\left(f_{1} f_{2}-e_{2} e_{3}\right) \\
e_{1} e_{2} e_{3} \\
0 & 0 & 0 & 1
\end{array}\right], \\
M_{4}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 1 & 1 & e_{4}
\end{array}\right] .
\end{array} .\right.
\end{aligned}
$$

Theorem 6. The following conditions are equivalent:
(a) The system (2) is reducible.
(b) The monodromy group of the system (2) is reducible.
(c) One of the non-trivial components stated in Theorem 5 is zero.
(d) One of the following six quantities:

$$
\alpha^{\prime}, \beta^{\prime}, \alpha+\alpha^{\prime}-\gamma, \beta+\alpha^{\prime}-\gamma, \alpha+\beta^{\prime}-\gamma, \beta+\beta^{\prime}-\gamma
$$

is an integer.
The detail will be given in [4].

References

[1] P. Appell et J. Kampé de Fériet: Fonctions Hypergéométriques et Hypersphériques. Polynomes d'Hermite, Gauthier-Villars, Paris (1926).
[2] E. Goursat: Extension du problème de Riemann à des fonctions hypergéométriques de deux variables. C. R. Acad. Sci. Paris, 95, 903-906 (1882).
[3] K. Okubo: Connection problem for systems of linear differential equations. Japan-U. S. Seminar on Ordinary and Functional Differential Equations, Springer Lecture Notes, Springer, Berlin, vol. 243, pp. 238-248 (1971).
[4] T. Sasai: On a monodromy group and irreducibility conditions of a fourth order Fuchsian differential system of Okubo type (to appear in J. Reine Angew. Math.).

