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Shizuoka University

(Communicated by K,6saku YOSIDA, M. J. A., April 12, 1978)

1. Introduction. In this paper a space means a topological space
with no separation axiom unless otherwise specified. We use the term
"Tychonoff functor" in the sense of K. Morita [2] and denote it by r

which is the epi-reflective functor from the category of all spaces and
continuous maps onto the category of all Tychonoff spaces and continu-
ous maps.

For any spaces X and Y, we denote by fx,r the unique continuous
map from r(X Y) onto r(X) r(Y) which makes the following diagram
commutative, where the symbol giz follows [2].

X X Y.... xxr r(X) X r(Y)
)xxY fx Y

r(X X Y)
The equality r(X X Y)=r(X) X r(Y) means that fx,r is a homeomor-

phism. Concerning this equality, the following theorems are known.
Theorem 1 (K. Morita). r(X X Y)=r(X) X r(Y) is valid if and only

if every cozero set of Xx Y can be expressed as the union of rectangular
cozero sets of XX Y.

A subset V of Xx Y is called a rectangular cozero set if it is ex-
pressed as V= Vx X Vr, where Vx and Vr are cozero sets of X and Y
respectively.

Theorem 2 (R. Pupier [3]). If X is a locally compact Hausdorff
space, then r(X x Y)=Xx r(Y) is valid for any space Y.

The purpose of this paper is to show that the converse of Theorem
2 is valid in case X is a Tychonoff space. More generally, we can prove
the following theorem.

Theorem 3. Let X be a space. If r(X) is not locally compact,
then there exists a Hausdorff space Y such that r(X Y)=/=r(X) r(Y).

Combining Theorem 3 with Theorem 2, we have the following

theorem.
Theorem 4. Let X be a Tychonoff space. Then the following

conditions are equivalent.
(1) X is locally compact.
(2) r(X Y)=X r(Y) for any space Y.
2. Preliminaries. Hereafter the symbol N denotes the set of all
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positive integers.
In this section we shall prove the following lemma which is needed

to prove Theorem 3.
Lemma 5. Let X be a Tychonoff space and C a non-compact closed

subset of X. Then there exist a (Hausdorff) space Y, a point Yo of Y
and a continuous function h: X Y-[0, 1] which satisfy the following
conditions.

(1) Yo is not an isolated point of Y.
(2) h(z)-- 1 for z e X {Y0}.
(3) h-l(0) (C {y})=/= for each y e Y--{Y0}.

(In particular the projection pr from X Y onto Y is not a Z-mapping
in the sense of Z. Frolil [1].)

Proof. Since C is a non-compact closed subset of a Tychonoff
space X, there exists a collection {E: fl e B} of zero sets of X satisfy-
ing the condition that gl {E: e B}= and (C/{E: fl e ,}) Cl C:/= or
each finite subset ? o B. Let us denote by F the set of all finite sub-
sets o B, and put F= Cl {E: fle -} or each , e F. Then we define a
space Y as ollows:

Y----U {Yr " e _F} U {Y0}
where Nr--N ’or each . e F, with the topology such that

(i) Each point of U {N , e F} is isolated.
(ii) The point Y0 has an open nbd(--neighbourhood) base of the

orm { U {Nj e F, . } U {Y0} i e N, ? e F}, where Nj----- {i, i + 1, i + 2,
..}N. Then, clearly, Y0 is not an isolated point of Y.

To construct the unction h, we take, or each fle B, a countable
collection {G" i e N} of cozero sets o X and a countable collection
{K" i e N} o zero sets of X such that

G K G+ K+ or each i e N,
{G" i e Y}-- {g" i e Y}--E.

Let us put G-- {G" fle ?} and K- {K"/ e y} for each , e F and
i e N. Then G is a cozero set of X and K is a zero set of X such that

GKG+K+ for each i e N,
{G" i e Y}=( {g" i e N}=Fr.

Here we can find, or each . e F and i e N, a continuous function h" X
-*[0, 1] such that h(x)=l for x e X-G and h(x)=O f_or x e K. Let
us now define a function h X Y-*[0, 1] as follows:

h(z) 1 for z e X x {Yo}
h(z) h(z) for , e F, i e N and z e Xx {i}.

Then it is easily shown that h is a continuous unction satisfying the
required properties. Thus we complete the proo of Lemma 5.

3. Proof of Theorem 3. We first prove the iollowing theorem.
Theorem 3’. Let X be a Tychonoff space. If X is not locally com-

pact, then there exists a Hausdorff space Y such that r(X x Y) :/=XX r(Y).
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Proof. Let X be a Tychonoff space which is not lolally compact,
and 0 a point of X which has no compact nbd. Let us fix some open
nbd base {U" e A} at x0, and define a space Y0 as follows"

Y0-U {{p} U N" e A} U {p},
where N-=N or each e A, with the topology such that

(1) Each point of U {N’a e A} is isolated.
(2) The point p has as open nbd base of the form

{ U {Y" e A’} U {p}" A’cA, IA--A’I< 0}.
(3) The point p (eA) has an open nbd base of the form

{{p} U N" ] e N}, where N-{], ] + 1, } cN. The space Y0 is Haus-
dorf and satisfies the following condition.

(,) Each cozero set V of Y0 with p e V stisfies the inequality
I{ e A" p e Y0- V}l< 0.

On the other hand, since each U is a non-compact closed subset of
X, there exist, by Lemma 5, a Hausforff space Y, point y of Y and
a continuous function h" XX Y-[0, 1] which satisfy the following

conditions.
(1) y is not an isolated point of Y.
(2) h(z)-- 1 for z e Xx {y}.
(3) hzl(0) N (U X {y}) :/: for each y e Y--{y}.

By identifying the point p of Y0 with the point y of Y for each a e A,
we have a quotient space Y and a quotient map q" Y0({Y" a e A})
-Y, where the symbol means the topological sum.

To prove that r(X x Y) #:X x r(Y), let us define a continuous function

f" X x Y-[0, 1] as follows"
f(z)- 1 for z e X >< q(Yo)

f(z) h (Ix >< q)-l(z) for z e X X q(Y) and a e A,
where q= is the restriction of q to Y.

Suppose that there exists a rectangular cozero set V= Vx x V of
X X Y such that (x0, q(p)) e Vcf-l([0, 1]). Then, by condition (,), we
have 1{ e A q(p) e Y-- Vr}l< 0. Let us put Ao-{ e A q(p) e Vr}.
Then, by (1) and (3), we have U-Vx=/= for each a cA0. Since

IA-AoI< 4o, this implies that x0 is an isolated point of X, which is a

contradiction. Thus, according to Theorem 1, we complete the proof
of Theorem 3’.

Theorem 3 is a direct consequence of Theorem 3’. (Notice that
the image of a cozero set of X by 4x is also a cozero set of r(X)).

Remark. In [3], R. Pupier has proved the following theorem
which is a partial converse to Theorem 3" If r(X) is locally compact,
then r(X X Y)----r(X)X r(Y) is valid for any k-space Y.
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