26. Tychonoff Functor and Product Spaces

By Shinpei OKA Shizuoka University

(Communicated by Kôsaku Yosida, M. J. A., April 12, 1978)

1. Introduction. In this paper a space means a topological space with no separation axiom unless otherwise specified. We use the term "Tychonoff functor" in the sense of K. Morita [2] and denote it by τ which is the epi-reflective functor from the category of all spaces and continuous maps onto the category of all Tychonoff spaces and continuous maps.

For any spaces X and Y, we denote by $f_{X,Y}$ the unique continuous map from $\tau(X \times Y)$ onto $\tau(X) \times \tau(Y)$ which makes the following diagram commutative, where the symbol Φ_X follows [2].

The equality $\tau(X \times Y) = \tau(X) \times \tau(Y)$ means that $f_{X,Y}$ is a homeomorphism. Concerning this equality, the following theorems are known.

Theorem 1 (K. Morita). $\tau(X \times Y) = \tau(X) \times \tau(Y)$ is valid if and only if every cozero set of $X \times Y$ can be expressed as the union of rectangular cozero sets of $X \times Y$.

A subset V of $X \times Y$ is called a rectangular cozero set if it is expressed as $V = V_X \times V_Y$, where V_X and V_Y are cozero sets of X and Y respectively.

Theorem 2 (R. Pupier [3]). If X is a locally compact Hausdorff space, then $\tau(X \times Y) = X \times \tau(Y)$ is valid for any space Y.

The purpose of this paper is to show that the converse of Theorem 2 is valid in case X is a Tychonoff space. More generally, we can prove the following theorem.

Theorem 3. Let X be a space. If $\tau(X)$ is not locally compact, then there exists a Hausdorff space Y such that $\tau(X \times Y) \neq \tau(X) \times \tau(Y)$.

Combining Theorem 3 with Theorem 2, we have the following theorem.

Theorem 4. Let X be a Tychonoff space. Then the following conditions are equivalent.

(1) X is locally compact.

(2) $\tau(X \times Y) = X \times \tau(Y)$ for any space Y.

2. Preliminaries. Hereafter the symbol N denotes the set of all

positive integers.

In this section we shall prove the following lemma which is needed to prove Theorem 3.

Lemma 5. Let X be a Tychonoff space and C a non-compact closed subset of X. Then there exist a (Hausdorff) space Y, a point y_0 of Y and a continuous function $h: X \times Y \rightarrow [0, 1]$ which satisfy the following conditions.

- (1) y_0 is not an isolated point of Y.
- (2) h(z) = 1 for $z \in X \times \{y_0\}$.
- (3) $h^{-1}(0) \cap (C \times \{y\}) \neq \phi$ for each $y \in Y \{y_0\}$.

(In particular the projection p_Y from $X \times Y$ onto Y is not a Z-mapping in the sense of Z. Frolik [1].)

Proof. Since *C* is a non-compact closed subset of a Tychonoff space *X*, there exists a collection $\{E_{\beta}: \beta \in B\}$ of zero sets of *X* satisfying the condition that $\cap \{E_{\beta}: \beta \in B\} = \phi$ and $(\cap \{E_{\beta}: \beta \in \gamma\}) \cap C \neq \phi$ for each finite subset γ of *B*. Let us denote by Γ the set of all finite subsets of *B*, and put $F_{\gamma} = \cap \{E_{\beta}: \beta \in \gamma\}$ for each $\gamma \in \Gamma$. Then we define a space *Y* as follows:

$$Y = \bigcup \{N_r : \gamma \in \Gamma\} \cup \{y_0\}$$

where $N_r = N$ for each $\gamma \in \Gamma$, with the topology such that

(i) Each point of $\bigcup \{N_r : \gamma \in \Gamma\}$ is isolated.

(ii) The point y_0 has an open nbd(=neighbourhood) base of the form $\{ \cup \{N_{\delta}^i : \delta \in \Gamma, \gamma \subset \delta\} \cup \{y_0\} : i \in N, \gamma \in \Gamma \}$, where $N_{\delta}^i = \{i, i+1, i+2, \dots\} \subset N_{\delta}$. Then, clearly, y_0 is not an isolated point of Y.

To construct the function h, we take, for each $\beta \in B$, a countable collection $\{G_{\beta}^{i}: i \in N\}$ of cozero sets of X and a countable collection $\{K_{\beta}^{i}: i \in N\}$ of zero sets of X such that

$$G^i_{eta} \supset K^i_{eta} \supset G^{i+1}_{eta} \supset K^{i+1}_{eta} \quad ext{ for each } i \in N, \ igcap \{G^i_{eta} : i \in N\} = igcap \{K^i_{eta} : i \in N\} = E_{eta}.$$

Let us put $G_r^i = \bigcap \{G_{\beta}^i : \beta \in \gamma\}$ and $K_r^i = \bigcap \{K_{\beta}^i : \beta \in \gamma\}$ for each $\gamma \in \Gamma$ and $i \in N$. Then G_r^i is a cozero set of X and K_r^i is a zero set of X such that $G_r^i \supset K_r^i \supset G_r^{i+1} \supset K_r^{i+1}$ for each $i \in N$,

$$\bigcap \{G_r^i : i \in N\} = \bigcap \{K_r^i : i \in N\} = F_r.$$

Here we can find, for each $\gamma \in \Gamma$ and $i \in N$, a continuous function $h_r^i \colon X \to [0, 1]$ such that $h_r^i(x) = 1$ for $x \in X - G_r^i$ and $h_r^i(x) = 0$ for $x \in K_r^i$. Let us now define a function $h \colon X \times Y \to [0, 1]$ as follows:

h(z) = 1 for $z \in X \times \{y_0\}$

 $h(z) = h_r^i(z)$ for $\gamma \in \Gamma$, $i \in N_r$ and $z \in X \times \{i\}$.

Then it is easily shown that h is a continuous function satisfying the required properties. Thus we complete the proof of Lemma 5.

3. Proof of Theorem 3. We first prove the following theorem.

Theorem 3'. Let X be a Tychonoff space. If X is not locally compact, then there exists a Hausdorff space Y such that $\tau(X \times Y) \neq X \times \tau(Y)$. and x_0 a point of X which has no compact nbd. Let us fix some open nbd base $\{U_{\alpha} : \alpha \in A\}$ at x_0 , and define a space Y_0 as follows:

$$X_0 = \bigcup \{\{p_{\alpha}\} \cup N_{\alpha} : \alpha \in A\} \cup \{p\},$$

where $N_{\alpha} = N$ for each $\alpha \in A$, with the topology such that

- (1) Each point of $\bigcup \{N_{\alpha} : \alpha \in A\}$ is isolated.
- (2) The point p has as open nbd base of the form

 $\{\cup \{N_{\alpha} \colon \alpha \in A'\} \cup \{p\} \colon A' \subset A, |A - A'| \leq \aleph_0\}.$

(3) The point p_{α} ($\alpha \in A$) has an open nbd base of the form $\{\{p_{\alpha}\} \cup N_{\alpha}^{j}: j \in N\}$, where $N_{\alpha}^{j} = \{j, j+1, \dots\} \subset N_{\alpha}$. The space Y_{0} is Hausdorff and satisfies the following condition.

(*) Each cozero set V of Y_0 with $p \in V$ satisfies the inequality $|\{\alpha \in A : p_\alpha \in Y_0 - V\}| \leq \aleph_0$.

On the other hand, since each \overline{U}_{α} is a non-compact closed subset of X, there exist, by Lemma 5, a Hausforff space Y_{α} , a point y_{α} of Y_{α} and a continuous function $h_{\alpha}: X \times Y_{\alpha} \rightarrow [0, 1]$ which satisfy the following conditions.

(1)_{α} y_{α} is not an isolated point of Y_{α} .

(2)_a $h_{\alpha}(z) = 1$ for $z \in X \times \{y_{\alpha}\}$.

 $(3)_{\alpha} \quad h_{\alpha}^{-1}(0) \cap (\overline{U}_{\alpha} \times \{y\}) \neq \phi \text{ for each } y \in Y_{\alpha} - \{y_{\alpha}\}.$

By identifying the point p_{α} of Y_0 with the point y_{α} of Y_{α} for each $\alpha \in A$, we have a quotient space Y and a quotient map $q: Y_0 \oplus (\oplus \{Y_{\alpha} : \alpha \in A\}) \to Y$, where the symbol \oplus means the topological sum.

To prove that $\tau(X \times Y) \neq X \times \tau(Y)$, let us define a continuous function $f: X \times Y \rightarrow [0, 1]$ as follows:

 $\begin{array}{l} f(z) \!=\! 1 \quad \mbox{for } z \in X \!\times\! q(Y_0) \\ f(z) \!=\! h_{\alpha} \circ (1_X \!\times\! q_{\alpha})^{-1} \! (z) \quad \mbox{for } z \in X \!\times\! q(Y_{\alpha}) \mbox{ and } \alpha \in A, \end{array}$

where q_{α} is the restriction of q to Y_{α} .

Suppose that there exists a rectangular cozero set $V = V_X \times V_Y$ of $X \times Y$ such that $(x_0, q(p)) \in V \subset f^{-1}([0, 1])$. Then, by condition (*), we have $|\{\alpha \in A : q(p_\alpha) \in Y - V_Y\}| \leq \aleph_0$. Let us put $A_0 = \{\alpha \in A : q(p_\alpha) \in V_Y\}$. Then, by $(1)_{\alpha}$ and $(3)_{\alpha}$, we have $\overline{U}_{\alpha} - V_X \neq \phi$ for each $\alpha \in A_0$. Since $|A - A_0| < \aleph_0$, this implies that x_0 is an isolated point of X, which is a contradiction. Thus, according to Theorem 1, we complete the proof of Theorem 3'.

Theorem 3 is a direct consequence of Theorem 3'. (Notice that the image of a cozero set of X by Φ_X is also a cozero set of $\tau(X)$).

Remark. In [3], R. Pupier has proved the following theorem which is a partial converse to Theorem 3: If $\tau(X)$ is locally compact, then $\tau(X \times Y) = \tau(X) \times \tau(Y)$ is valid for any k-space Y.

S. OKA

References

- Z. Frolik: Applications of complete family of continuous functions to the theory of Q-spaces. Czech. Math. Journ., 11, 115-133 (1961).
- [2] K. Morita: Čech cohomology and covering dimension for topological spaces. Fund. Math., 87, 31-52 (1975).
- [3] R. Pupier: La complexion universelle d'un produit d'espaces complètement réguliers. Publ. Dept. Math. Lyon, 6, 75-84 (1969).