34. On Kodaira Dimension of Graphs

By Shigeru Iitaka
Department of Mathematics, University of Tokyo, Hongo, Tokyo
(Communicated by Kunihiko Kodaira, m. J. A., May 12, 1978)

1. We shall study curves on a complete non-singular rational surface \bar{S} defined over the field of complex numbers.

Let D be a reduced divisor consisting of rational curves C_{1}, \cdots, C_{s}. We let C_{i} have at most normal crossings and suppose that the singularity of D is ordinary, i.e., for any $p \in D$, if we take all components C_{1}, \cdots, C_{r} passing through p, then all tangents to C_{1}, \cdots, C_{r} at p are mutually distinct.

With each such D, we associate the graph $\Gamma(D)$. Now, define the following numerical invariants of a graph Γ :
$P_{m}(\Gamma)=\operatorname{Min}\left\{\bar{P}_{m}(\bar{S}-D) ; \bar{S}\right.$ is a complete rational surface and $\left.\Gamma=\Gamma(D)\right\}$, $\kappa(\Gamma)=\operatorname{Inf}\{\kappa(\bar{S}-D)$; the same as above $\}$.
Here, $\bar{P}_{m}(S)$ denotes the logarithmic m-genus of S and $\bar{\kappa}(S)$ the logarithmic Kodaira dimension of S (see [1] and [2]).

Let C_{1} be an edge-component (i.e., $\left(C_{1}, D^{0}\right)=1$ when $\left.D=C_{1}+D^{0}\right)$ of a divisor D corresponding to a graph Γ. Removing C_{1} we have a new graph Γ_{1}. Now, choose a surface \bar{S}_{1} and boundary D_{1} such that $\Gamma_{1}=\Gamma\left(D_{1}\right)$ and $P_{m}\left(\Gamma_{1}\right)=\bar{P}_{m}\left(\bar{S}-D_{1}\right)$ for any fixed m. Blow up at p_{1}, i.e., $\mu: \bar{S}=Q_{p_{1}}\left(\bar{S}_{1}\right) \rightarrow \bar{S}_{1}$ and put $D^{\prime}+\mu^{-1}(p)=\mu^{-1}\left(D_{1}\right)$. Then

$$
\begin{aligned}
& \bar{P}_{m}\left(\bar{S}-\mu^{-1}\left(D_{1}\right)\right)=\bar{P}_{m}\left(\bar{S}_{1}-D_{1}\right), \\
& \bar{P}_{m}\left(\bar{S}-\mu^{-1}\left(D_{1}\right)\right) \geqq \geqq \bar{P}_{m}\left(\bar{S}-D^{\prime}\right) .
\end{aligned}
$$

Since $\Gamma=\Gamma\left(\mu^{-1}\left(D_{1}\right)\right)$ and $\Gamma_{1}=\Gamma\left(D^{\prime}\right)$, we get

$$
P_{m}\left(\Gamma_{1}\right)=\bar{P}_{m}\left(\bar{S}_{1}-D_{1}\right) \geqq \bar{P}_{m}\left(\bar{S}-D^{\prime}\right)
$$

By definition, $\bar{P}_{m}\left(\bar{S}-D^{\prime}\right) \geqq P_{m}\left(\Gamma_{1}\right)$. Thus
Proposition 1. $P_{m}(\Gamma)=P_{m}\left(\Gamma_{1}\right)$.
Similarly, one obtains

$$
\kappa(\Gamma)=\kappa\left(\Gamma_{1}\right)
$$

Hence, Γ may be assumed to have no edge-components and no isolated edges.

In view of \bar{p}_{g}-formula [2], we obtain
Propositoin 2. $\quad P_{1}(\Gamma)=\bar{p}_{g}(\bar{S}-D)=h(\Gamma(D))$.
Here, \bar{S} is a complete rational surface and D is a reduced divisor such that $\Gamma=\Gamma(D)$. Moreover, $h(\Gamma)$ denotes the cyclotomic number of Γ.
2. In this section, we restrict ourselves to the graphs Γ with $P_{1}(\Gamma)=h(\Gamma)=0$.

Theorem 1. $\kappa(\Gamma)=-\infty$ if and only if Γ is a graph of type A_{m}.

Moreover, $P_{2}(\Gamma)=0$ implies $\kappa(\Gamma)=-\infty$.
Theorem 2. $\kappa(\Gamma)=0$ if and only if Γ is of the following type:

Moreover, $P_{2}(\Gamma)=P_{4}(\Gamma)=1$ implies $\kappa(\Gamma)=0$.
Theorem 3. If $\kappa(\Gamma)=1$, then Γ is of type $G_{n}^{\prime}(6 \geqq n \geqq 2)$.

These are derived from the following lemmas.
Lemma 1. Let Γ be a graph of type $G_{n}(n \geqq 2)$. Then $P_{2}(\Gamma)$ $\geqq n-1$ and hence $\kappa(\Gamma) \geqq 0$. Moreover, if $n \geqq 3$, then $\kappa(\Gamma)=2$.

Here, by G_{n} we denote the following graph.

Lemma 2. If Γ is of type G_{n}^{\prime}, then $P_{2}(\Gamma)=n-1, P_{3}(\Gamma) \geqq 2$. Moreover, $\kappa(\Gamma)=1$ if and only if $2 \leqq n \leqq 6$.

Lemma 3. If Γ is of the following type:

then $P_{2}(\Gamma) \geqq 2$ and $\kappa(\Gamma)=2$.
Lemma 4. If Γ is of the following type:

then $P_{3}(\Gamma) \geqq 2$ and $\kappa(\Gamma)=2$.
Lemma 5. If Γ is of the following type:

then $P_{2}(\Gamma) \geqq 2$ and $\kappa(\Gamma)=2$.
Proofs of Lemmas 1 and 4. First we take a reduced divisor as follows:

Consider a composition $\mu: \bar{S}^{\sharp} \rightarrow \bar{S}$ of blowing ups at p_{1}, \cdots, p_{n}. Then, letting $E_{j}=\mu^{-1}\left(p_{j}\right)$ we have

$$
K\left(\bar{S}^{\sharp}\right)+\mu^{-1}(D)=\mu^{*}(K(\bar{S})+D)-\sum E_{j} .
$$

By Riemann Roch theorem,

$$
\operatorname{dim}\left|K(\bar{S})+A_{1}+A_{2}+L\right|=\operatorname{dim}\left|K(\bar{S})+B_{1}+B_{2}+L\right|=0
$$

Hence, let $X \in\left|K(\bar{S})+A_{1}+A_{2}+L\right|$ and $Y \in\left|K(\bar{S})+B_{1}+B_{2}+L\right|$. Then

$$
\begin{aligned}
2\left(K\left(\bar{S}^{\#}\right)+\mu^{-1}(D)\right) & \sim X+Y+A_{1}^{\prime}+A_{2}^{\prime}+B_{1}^{\prime}+B_{2}^{\prime}+\cdots+C_{1}^{\prime}+C_{2}^{\prime}+C_{1}+C_{2} \\
& \geqq Y+\cdots+C_{1}+C_{2} \sim K(\bar{S})+B_{1}+B_{2}+\cdots+C_{1}+C_{2}+L .
\end{aligned}
$$

(A^{\prime} denotes the proper transform of A.)
Applying Riemann Roch theorem, we have

$$
\begin{aligned}
\operatorname{dim} & \left|K(\bar{S})+B_{1}+B_{2}+\cdots+C_{1}+C_{2}+L\right|+1 \\
& =\pi\left(B_{1}+B_{2}+\cdots+C_{1}+C_{2}+L\right)=n-1 .
\end{aligned}
$$

Here, $\pi(D)$ denotes the virtual genus of D.
Assuming $\bar{\kappa}(\bar{S}-D)=1$, we consider a logarithmic canonical fibered surface $\varphi: \bar{S} \rightarrow J \leftrightarrows \boldsymbol{P}^{1}$ of S. Take a general fiber $\Gamma_{u}=\varphi^{-1}(u)$. Then $\left(K\left(\bar{S}^{\sharp}\right)+\mu^{-1}(D), \Gamma_{u}\right)=\Gamma_{u}^{2}=\pi\left(\Gamma_{u}\right)=0$. Hence, using the explicit formula for $2\left(K\left(\bar{S}^{\sharp}\right)+\mu^{-1}(D)\right)$, we derive $\left(C_{1}+C_{2}, \Gamma_{u}\right)=0$ and ($\left.L^{*}, \Gamma_{u}\right)=2, L^{*}$ being the proper transform of Γ. Hence $\left(C_{1}^{\prime}, \Gamma_{u}\right)=\left(C_{2}^{\prime}, \Gamma_{u}\right)=\left(G, \Gamma_{u}\right)$ $=0$. Furthermore, $\left(A_{1}^{\prime}, \Gamma_{u}\right)=\left(A_{2}^{\prime}, \Gamma_{u}\right)=\left(E, \Gamma_{u}\right)=\left(B_{1}^{\prime}, \Gamma_{u}\right)=\left(B_{2}^{\prime}, \Gamma_{u}\right)=0$. Hence, $A_{1}^{\prime}+A_{2}^{\prime}+E$ is a part of a fiber $\varphi^{-1}(a)$. Similarly, $B_{1}^{\prime}+B_{2}^{\prime}+E$ $\subseteq \varphi^{-1}(b), C_{1}^{\prime}+C_{2}^{\prime}+G \subseteq \varphi^{-1}(c)$. Let $\psi=\varphi \mid \Gamma^{*}: \Gamma^{*} \rightarrow J$, which is 2-sheeted, and which ramifies at $E \cap \Gamma^{*}, F \cap \Gamma^{*}, G \cap \Gamma^{*}$. This contradicts the Hurwitz formula for ψ.

Example 1. Let H_{1}, \cdots, H_{5} be 5 lines in \boldsymbol{P}^{2} as in Fig. 1. Blow-

Fig. 1
ing up at a, b, c and d, we have a birational morphism $\rho: \bar{S} \rightarrow \boldsymbol{P}^{2}$ and put $D=\rho^{-1}\left(H_{1}+\cdots+H_{5}\right)-\rho^{-1}(a)-\rho^{-1}(b)-\rho^{-1}(c)$ (as a divisor). Then $\Gamma(D)$ is of type G_{2} and $\bar{P}_{2 m}(\bar{S}-D)=1$ for any $m \geqq 1$. Hence $\bar{\kappa}(\bar{S}-D)$ $=0$.

Now, we come back to the proof of Lemma 4 and take a reduced divisor D as follows:

Blowing up at p and q, we have a proper birational morphism $\mu: \bar{S}^{\sharp} \rightarrow \bar{S}$. Defining $E=\mu^{-1}(p)$ and $F=\mu^{-1}(q)$, we have

$$
K\left(\bar{S}^{*}\right)+\mu^{-1}(D)=\mu^{*}\left(K(\bar{S})+A_{1}+A_{2}+A_{3}+B_{1}+B_{2}+B_{3}\right)-E-F .
$$

Take $X \in\left|K(\bar{S})+A_{1}+A_{2}+A_{3}\right|$ and $Y \in\left|K(\bar{S})+B_{1}+B_{2}+B_{3}\right|$. Then

$$
\begin{aligned}
3\left(K\left(\bar{S}^{\ddagger}\right)+\mu^{-1}(D)\right) \sim & X+Y+A_{1}^{\prime}+A_{2}^{\prime}+A_{3}^{\prime}+B_{1}^{\prime}+B_{2}^{\prime}+B_{3}^{\prime} \\
& +K(\bar{S})+A_{1}+A_{2}+A_{3}+B_{1}+B_{2}+B_{3} \\
\geqq & K(\bar{S})+A_{1}+A_{2}+A_{3}+B_{1}+B_{2}+B_{3} .
\end{aligned}
$$

Hence $\bar{P}_{3}(\bar{S}-D) \geqq \pi\left(A_{1}+A_{2}+A_{3}+B_{1}+B_{2}+B_{3}\right)=2$. Furthermore, we find an effective divisor Z such that

$$
6\left(K\left(\bar{S}^{\sharp}\right)+\mu^{-1}(D)\right) \sim Z \geqq A_{1}+A_{2}+A_{3}+B_{1}+B_{2}+B_{3}=D .
$$

From this it follows that $\bar{\kappa}(\bar{S}-D)=2$. We omit the detail.
3. The case in which $h(\Gamma)>0$ is more complicated.

Theorem 4. If $\bar{P}_{1}(\Gamma)=1$ and $\kappa(\Gamma)=0$, then Γ is one of the following types:

Moreover, $\bar{P}_{1}(\Gamma)=P_{4}(\Gamma)=1$ yields $\bar{\kappa}(\Gamma)=0$.
Theorem 5. If $\kappa(\Gamma)=1, \Gamma$ is classified into the following types $C_{n}, C_{n}^{\prime}, C_{n}^{\prime \prime}, D_{n}^{I}, D_{n}^{I *}, \cdots, D_{n}^{I I * *}, X_{l, m, n, k}, Y_{l, m, n}$.

Details will appear elsewhere.

References

[1] S. Iitaka: Some applications of logarithmic Kodaira dimension. Proc. Int. Symp. Algebraic Geometry, Kyoto (1977).
[2] -: On the Diophantine equation $\varphi(X, Y)=\varphi(x, y)$. J. reine angew. Math. (1978).
[3] -: Virtual singularity theorem and logarithmic bigenus (preprint).
[4] I. Wakabayashi: On Kodaira dimension of complements of plane curves (to appear).

