34. On Kodaira Dimension of Graphs

By Shigeru IITAKA

Department of Mathematics, University of Tokyo, Hongo, Tokyo (Communicated by Kunihiko Kodaira, M. J. A., May 12, 1978)

1. We shall study curves on a complete non-singular rational surface \bar{S} defined over the field of complex numbers.

Let D be a reduced divisor consisting of rational curves C_1, \dots, C_s . We let C_i have at most normal crossings and suppose that the singularity of D is ordinary, i.e., for any $p \in D$, if we take all components C_1, \dots, C_r passing through p, then all tangents to C_1, \dots, C_r at p are mutually distinct.

With each such D, we associate the graph $\Gamma(D)$. Now, define the following numerical invariants of a graph Γ :

 $P_m(\Gamma) = \text{Min} \{ \overline{P}_m(\overline{S} - D) ; \overline{S} \text{ is a complete rational surface and } \Gamma = \Gamma(D) \},$ $\kappa(\Gamma) = \text{Inf} \{ \kappa(\overline{S} - D) ; \text{ the same as above} \}.$

Here, $\overline{P}_m(S)$ denotes the logarithmic *m*-genus of S and $\overline{\kappa}(S)$ the logarithmic Kodaira dimension of S (see [1] and [2]).

Let C_1 be an edge-component (i.e., $(C_1, D^0) = 1$ when $D = C_1 + D^0$) of a divisor D corresponding to a graph Γ . Removing C_1 we have a new graph Γ_1 . Now, choose a surface \overline{S}_1 and boundary D_1 such that $\Gamma_1 = \Gamma(D_1)$ and $P_m(\Gamma_1) = \overline{P}_m(\overline{S} - D_1)$ for any fixed m. Blow up at p_1 , i.e., $\mu : \overline{S} = Q_m(\overline{S}_1) \to \overline{S}_1$ and put $D' + \mu^{-1}(p) = \mu^{-1}(D_1)$. Then

$$\bar{P}_{m}(\bar{S}-\mu^{-1}(D_{1})) = \bar{P}_{m}(\bar{S}_{1}-D_{1}),
\bar{P}_{m}(\bar{S}-\mu^{-1}(D_{1})) \ge \bar{P}_{m}(\bar{S}-D').$$

Since $\Gamma = \Gamma(\mu^{-1}(D_1))$ and $\Gamma_1 = \Gamma(D')$, we get

$$P_m(\Gamma_1) = \overline{P}_m(\overline{S}_1 - D_1) \ge \overline{P}_m(\overline{S} - D').$$

By definition, $\bar{P}_m(\bar{S}-D') \geq P_m(\Gamma_1)$. Thus

Proposition 1. $P_m(\Gamma) = P_m(\Gamma_1)$.

Similarly, one obtains

$$\kappa(\Gamma) = \kappa(\Gamma_1)$$
.

Hence, Γ may be assumed to have no edge-components and no isolated edges.

In view of \overline{p}_q -formula [2], we obtain

Proposition 2. $P_1(\Gamma) = \overline{p}_g(\overline{S} - D) = h(\Gamma(D))$.

Here, \bar{S} is a complete rational surface and D is a reduced divisor such that $\Gamma = \Gamma(D)$. Moreover, $h(\Gamma)$ denotes the cyclotomic number of Γ .

2. In this section, we restrict ourselves to the graphs Γ with $P_1(\Gamma) = h(\Gamma) = 0$.

Theorem 1. $\kappa(\Gamma) = -\infty$ if and only if Γ is a graph of type A_m .

Moreover, $P_2(\Gamma) = 0$ implies $\kappa(\Gamma) = -\infty$.

Theorem 2. $\kappa(\Gamma) = 0$ if and only if Γ is of the following type:

Moreover, $P_2(\Gamma) = P_4(\Gamma) = 1$ implies $\kappa(\Gamma) = 0$.

Theorem 3. If $\kappa(\Gamma)=1$, then Γ is of type G'_n $(6 \ge n \ge 2)$.

These are derived from the following lemmas.

Lemma 1. Let Γ be a graph of type G_n $(n \ge 2)$. Then $P_2(\Gamma) \ge n-1$ and hence $\kappa(\Gamma) \ge 0$. Moreover, if $n \ge 3$, then $\kappa(\Gamma) = 2$.

Here, by G_n we denote the following graph.

Lemma 2. If Γ is of type G'_n , then $P_2(\Gamma) = n-1$, $P_3(\Gamma) \ge 2$. Moreover, $\kappa(\Gamma) = 1$ if and only if $2 \le n \le 6$.

Lemma 3. If Γ is of the following type:

then $P_2(\Gamma) \geq 2$ and $\kappa(\Gamma) = 2$.

Lemma 4. If Γ is of the following type:

then $P_3(\Gamma) \ge 2$ and $\kappa(\Gamma) = 2$.

Lemma 5. If Γ is of the following type:

then $P_2(\Gamma) \geq 2$ and $\kappa(\Gamma) = 2$.

Proofs of Lemmas 1 and 4. First we take a reduced divisor as follows:

Consider a composition $\mu: \bar{S}^* \to \bar{S}$ of blowing ups at p_1, \dots, p_n . Then, letting $E_j = \mu^{-1}(p_j)$ we have

$$K(\bar{S}^*) + \mu^{-1}(D) = \mu^*(K(\bar{S}) + D) - \sum E_j$$
.

By Riemann Roch theorem,

$$\dim |K(\bar{S}) + A_1 + A_2 + L| = \dim |K(\bar{S}) + B_1 + B_2 + L| = 0.$$

Hence, let $X \in |K(\overline{S}) + A_1 + A_2 + L|$ and $Y \in |K(\overline{S}) + B_1 + B_2 + L|$. Then $2(K(\overline{S}^*) + \mu^{-1}(D)) \sim X + Y + A_1' + A_2' + B_1' + B_2' + \cdots + C_1' + C_2' + C_1 + C_2$

$$(Y) \sim X + Y + A_1 + A_2 + B_1 + B_2 + \cdots + C_1 + C_2 + C_2 + C_2 + C_1 + C_2 + C_2$$

(A' denotes the proper transform of A.)

Applying Riemann Roch theorem, we have

$$\dim |K(\bar{S}) + B_1 + B_2 + \dots + C_1 + C_2 + L| + 1$$

= $\pi(B_1 + B_2 + \dots + C_1 + C_2 + L) = n - 1.$

Here, $\pi(D)$ denotes the virtual genus of D.

Assuming $\bar{\kappa}(\bar{S}-D)=1$, we consider a logarithmic canonical fibered surface $\varphi\colon \bar{S}\to J\cong P^1$ of S. Take a general fiber $\Gamma_u=\varphi^{-1}(u)$. Then $(K(\bar{S}^*)+\mu^{-1}(D),\Gamma_u)=\Gamma_u^2=\pi(\Gamma_u)=0$. Hence, using the explicit formula for $2(K(\bar{S}^*)+\mu^{-1}(D))$, we derive $(C_1+C_2,\Gamma_u)=0$ and $(L^*,\Gamma_u)=2$, L^* being the proper transform of Γ . Hence $(C_1',\Gamma_u)=(C_2',\Gamma_u)=(G,\Gamma_u)=0$. Furthermore, $(A_1',\Gamma_u)=(A_2',\Gamma_u)=(E,\Gamma_u)=(B_1',\Gamma_u)=(B_2',\Gamma_u)=0$. Hence, $A_1'+A_2'+E$ is a part of a fiber $\varphi^{-1}(a)$. Similarly, $B_1'+B_2'+E\subseteq\varphi^{-1}(b)$, $C_1'+C_2'+G\subseteq\varphi^{-1}(c)$. Let $\psi=\varphi\mid \Gamma^*:\Gamma^*\to J$, which is 2-sheeted, and which ramifies at $E\cap \Gamma^*$, $F\cap \Gamma^*$, $G\cap \Gamma^*$. This contradicts the Hurwitz formula for ψ .

Example 1. Let H_1, \dots, H_5 be 5 lines in P^2 as in Fig. 1. Blow-

Fig. 1

ing up at a, b, c and d, we have a birational morphism $\rho: \overline{S} \to P^2$ and put $D = \rho^{-1}(H_1 + \cdots + H_b) - \rho^{-1}(a) - \rho^{-1}(b) - \rho^{-1}(c)$ (as a divisor). Then $\Gamma(D)$ is of type G_2 and $\overline{P}_{2m}(\overline{S} - D) = 1$ for any $m \ge 1$. Hence $\overline{\kappa}(\overline{S} - D) = 0$.

Now, we come back to the proof of Lemma 4 and take a reduced divisor D as follows:

Blowing up at p and q, we have a proper birational morphism $\mu: \bar{S}^* \to \bar{S}$. Defining $E = \mu^{-1}(p)$ and $F = \mu^{-1}(q)$, we have

$$\begin{split} K(\bar{S}^{\sharp}) + \mu^{-1}(D) &= \mu^{*}(K(\bar{S}) + A_{1} + A_{2} + A_{3} + B_{1} + B_{2} + B_{3}) - E - F. \\ \text{Take } X \in |K(\bar{S}) + A_{1} + A_{2} + A_{3}| \text{ and } Y \in |K(\bar{S}) + B_{1} + B_{2} + B_{3}|. \quad \text{Then} \\ 3(K(\bar{S}^{\sharp}) + \mu^{-1}(D)) \sim X + Y + A'_{1} + A'_{2} + A'_{3} + B'_{1} + B'_{2} + B'_{3} \\ &\quad + K(\bar{S}) + A_{1} + A_{2} + A_{3} + B_{1} + B_{2} + B_{3} \\ &\geqq K(\bar{S}) + A_{1} + A_{2} + A_{3} + B_{1} + B_{2} + B_{3}. \end{split}$$

Hence $\bar{P}_3(\bar{S}-D) \ge \pi(A_1+A_2+A_3+B_1+B_2+B_3) = 2$. Furthermore, we find an effective divisor Z such that

$$6(K(\bar{S}^*) + \mu^{-1}(D)) \sim Z \ge A_1 + A_2 + A_3 + B_1 + B_2 + B_3 = D.$$

From this it follows that $\bar{\kappa}(\bar{S}-D)=2$. We omit the detail.

3. The case in which $h(\Gamma) > 0$ is more complicated.

Theorem 4. If $\overline{P}_1(\Gamma)=1$ and $\kappa(\Gamma)=0$, then Γ is one of the following types:

Moreover, $\overline{P}_1(\Gamma) = P_4(\Gamma) = 1$ yields $\bar{\kappa}(\Gamma) = 0$.

Theorem 5. If $\kappa(\Gamma)=1$, Γ is classified into the following types $C_n, C'_n, C''_n, D^I_n, D^{I*}_n, \cdots, D^{II**}_{I}, X_{l,m,n,k}, Y_{l,m,n}$.

Details will appear elsewhere.

References

- [1] S. Iitaka: Some applications of logarithmic Kodaira dimension. Proc. Int. Symp. Algebraic Geometry, Kyoto (1977).
- [2] —: On the Diophantine equation $\varphi(X, Y) = \varphi(x, y)$. J. reine angew. Math. (1978).
- [3] —: Virtual singularity theorem and logarithmic bigenus (preprint).
- [4] I. Wakabayashi: On Kodaira dimension of complements of plane curves (to appear).