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1. We shall study curves on a complete non-singular rational
surface S defined over the field of complex numbers.
Let D be a reduced divisor consisting of rational curves C,, - - -, C,.
We let C; have at most normal crossings and suppose that the singu-
larity of D is ordinary, i.e., for any p € D, if we take all components
C,---,C, passing through p, then all tangents to C,.-.,C, at »
are mutually distinect.
With each such D, we associate the graph I'(D). Now, define the
following numerical invariants of a graph I":
P, (IN=Min{P,(S—D); S is a complete rational surface and I'=1I"(D)},
£(I")=Inf {¢(S—D) ; the same as above}.
Here, P, (S) denotes the logarithmic m-genus of S and #(S) the loga-
rithmic Kodaira dimension of S (see [1] and [2]).
Let C, be an edge-component (i.e., (C;, D")=1 when D=C,+ D" of
a divisor D corresponding to a graph I'. Removing C, we have a new
graph I',, Now, choose a surface S, and boundary D, such that
I''=r{, and P,())=P,(S—D, for any fixed m. Blow up at p,,
i.e., #: 8=Q,(S)—S, and put D'+ (p)=p"*(D,). Then
P, (S—p\(DY))=P,(S,—D,),
P, (S—p (D)= P,(S—D).
Since I'=I"(p"%(Dy) and I',=I'(D"), we get
Pm(rl)=P—m(‘§1_Dl)ng(§"‘_D/)'
By definition, P,,(S—D")=P,(I"). Thus
Proposition 1. P, ([)=P,").
Similarly, one obtains
k(D) =k(T")).
Hence, I' may be assumed to have no edge-components and no isolated
edges.
In view of p,-formula [2], we obtain
Propositoin 2. P,(I")=p,(S—D)=hI(D)).
Here, S is a complete rational surface and D is a reduced divisor such
that '=I"(D). Moreover, h(I") denotes the cyclotomic number of I.
2. In this section, we restrict ourselves to the graphs I" with
P(IMN=h{I")=0.
Theorem 1. x(I)=—co if and only if I" is a graph of type A.,,.
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Moreover, P(I")=0 implies x(I")= —co.
Theorem 2. x(I")=0 if and only if I" is of the following type:
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Moreover, P,(I"Y=P,(I") =1 implies £(I")=0.
Theorem 3. If k(I")=1, then I" is of type G, (6=n=2).
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These are derived from the following lemmas.

Lemma 1. Let I' be a graph of type G, n=2). Then P,I)
=n—1 and hence k(I")=0. Moreover, if n=3, then x(I")=2.

Here, by G, we denote the following graph.
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Lemma 2. If I is of type G, then P,(IN=n—1, P,(I')=2. More-
over, k(I")=1 if and only if 2<n<6.
Lemma 3. If I' is of the following type:
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then P(I") =2 and £(I")=2.
Lemma 4. If I' is of the following type:
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then P,(I") =2 and £(I")=2.
Lemma 5. If I' is of the following type:

S

then P,(I") =2 and x(I")=2.
Proofs of Lemmas 1 and 4. First we take a reduced divisor as
follows:

A, 4 B, B,

S VAR VAT
A A A

Consider a composition p: S*—S of blowing ups at p,, - -+, p,. Then,
letting E,=p"'(p;) we have

K@Y+ (D)=p*K®S)+D)—> E,.
By Riemann Roch theorem,

dim |K(S)+ A, + A, +L|=dim |K(S) 4 B,+B,+L|=0.
Hence, let X ¢ |K(S)+A,+A,+L|and Y ¢|K(S)+B,+B,+L|. Then
2KSH+p DY ~X+Y+ A+ A+ B+ Bj+ - - - +C1+C;+C, 4+ C,
=2Y+---+C+C,~K®&)+B,+B,+ - +C+C,+L.
(A’ denotes the proper transform of A.)
Applying Riemann Roch theorem, we have
dim |K(S)+B,+B,+ -+ +C,+C,+L|+1

=7T(B1+Bz+ e +C1+Cz+L)=n—1-
Here, n(D) denotes the virtual genus of D.

Assuming #(S—D)=1, we consider a logarithmic canonical fibered
surface ¢: S—Jx P! of S. Take a general fiber I',=¢ (). Then
(K(SH+p (D), [)=TI%=a(l",)=0. Hence, using the explicit formula
for 2(K(S)+p (D)), we derive (C,+C,,I',))=0 and (L*,I',))=2, L*
being the proper transform of I'. Hence (C},I",)=(C;, I")=(G, I',)
=0. Furthermore, (A}, I")=(4,T,)=E,I,)={B,T,)=(B:I,)=0.
Hence, A,+A}+E is a part of a fiber ¢ '(a). Similarly, Bi+B;+E
Coe '(b), Ci+C3+GZe(¢). Let yp=¢|I™: I'*—J, which is 2-sheeted,
and which ramifies at ENI*, FNI'*, GNI'*. This contradicts the
Hurwitz formula for 4.

Example 1. Let H,, ---, H; be 5 lines in P? as in Fig. 1. Blow-
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Fig. 1

ing up at a, b, ¢ and d, we have a birational morphism p: S—P? and
put D=p '(H,+ -+ +Hp)—p (@) —p ' (b)—p~'(c) (as a divisor). Then
I'(D) is of type G, and P,,(S—D)=1 for any m=>=1. Hence &(S—D)
=0.

Now, we come back to the proof of Lemma 4 and take a reduced
divisor D as follows:

45 4,

Blowing up at p and ¢, we have a proper birational morphism
p: 8t—S. Defining E =p'(p) and F=p"'(q), we have
E(S)+p(D)=p*(K(S)+ A+ A, + A+ B, +B,+ B)—E—F.
Take X ¢|K(S)+A,+A,+A4; and Y ¢ |K(S) +B,+B,+B;. Then
B(K(SH+p (D) ~X+Y+A{+Aj+A}+B{+B;+B;
+K(S)+A,+4,+A,+B,+B,+B,
2K(S)+A,+A;+A;4+B,+B,+B,.
Hence P(S—D)=>r(A,+A,+A,;+B,+B,+B;)=2. Furthermore, we
find an effective divisor Z such that
6(K(SH+p(D)~Z=A,+A;+As+B,+B,+B,=D.
From this it follows that #(S—D)=2. We omit the detail.
3. The case in which 2(I") >0 is more complicated.

Theorem 4. If P(I")=1 and £(I")=0, then I" is one of the follow-
ing types:
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Hok ok
B, B,

Moreover, P,(I"Y=P/(I")=1 yields #(I")=0.

Theorem 5. If «(I")=1, I" is classified into the following types
Cn, C;v C;’, D7Iu sz*» ] szl**’ Xl,m,n,m Yl,'m,n°

Details will appear elsewhere.
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