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(Communicated by Kunihiko KODAIRA, M. .)., Sept. 12, 1978)

1. Introduction. Let X be a metric space. A flow or a dynamical
system on X is defined to be the triple (X,R, ) consisting of X, the
real line R and a map u:X RX such that

a) (x, 0)=x, x e X,
b) ((x, s), t)=(x, s+ t), s, t e R, x e X,
c) u is continuous on X R.

Given a dynamical system on X, the space X is called the phase space
of the dynamical system.

Let X be the set o,f all complex-valued continuous unctions on R.
X becomes a metric space with the metric

(,4x)-=sup min max Ip(x)--(x)l 1 }
Define a map

by

fu((f, t)=(fl gt, e X, t e R,
where gt(x)-’X + t for any x e R. Then a dynamical system (X, R,f)
is obtained, which is called the Bebutov dynamical system [1]. The
Bebutov dynamical system is important in the sense that a large class
of compact flows (i.e., the flows such that the phase spaces are compact)
may be embedded in it by virtue of the theorem of Bebutov-Kakutani
[2]: a necessary and sufficient condition for a compact flow to be iso-
morphic to some subsystem of the Bebutov dynamical system is that
its set of rest points be homeomorphic to some subset of the real line R.

The purpose of this paper is to study the structure of the phase
spaces o the Bebutov dynamical system and its compact subsystem.

The results obtained are"

(a) any orbit which is dense in X is positively or negatively
Poisson stable (Theorem 3.1),

(b) there exists an orbit which is dense in X, positively or nega-
tively Poisson stable, and neither positively nor negatively receding
(Theorem 3.2),

(c) the phase space of the compact subsystem of the Bebutov
dynamical system (X, R,f) is a border set in X (Theorem 4.1).

2. Definitions and notations. The sets
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z(x, R)= {z(x, t); t e R},
(x,R/)={(x, t); t e R+}, R+ =[0, +),

and
(x, R-)={(x, t); t e R-}, R-=(-, 0],

are respectively called the orbit, the positive semi-orbit, and the nega-
tive semi-orbit through x. The sets

L/(x)={y e X; there exists a sequence {t}R
with tn-- + c<) and (x, t)-y}

and
L-(x)={y e X there exists a sequence {t}R

with t--c and u(x, tn)-Y}
are respectively called the positive limit set and the negative limit set
o x.

An orbit u(x, R) is said to be positively or negatively Poisson stable
whenever, respectively, x e L/(x) or x e L-(x). An orbit is said to be
Poisson stable if it is both positively and negatively Poisson stable.

An orbit z(x,R) is said to be positively asymptotic if L/(x) is not
empty but x L/ (x). A negatively asymptotic orbit is defined similarly.

An orbit u(x,R) is said to be positively or negatively receding
whenever, respectively, L+(x)= or L-(x)=.

A point x e X is called a rest point if x-u(x, t) for all t e R. A
point x e X is said to be periodic if there exists a real number T:/:0
such that

=(x, t)--u(x, t + T) for all t e R.
A set MX is called invariant with respect to (X, R, u) whenever

u(x, t) e M for all x e M and all t e R.
A dynamical system (M, R, a) is called a subsystem of (X, R, ) if

M is invariant with respect to (X, R, z) and a is a restriction of to
MR.

}o The structure of the phase space of the Debtor dynamical
system. It is known that the Bebutov dynamical system has an orbit
which is dense in X [1].

Theorem :.1. If f(,R) is dense in X, then f(?,R) is posi-
tively or negatively Poisson stable.

Proof. Let be any point in f(, R). is not a rest point of
(X, R,f) by the equality

f(, R)=f(p, R)=X. ( 1
Hence there exists a positive number r such that

f(, R/) \ U(, r) :/:
and

f(, R-) \ U(, r)
by virtue of [3, p. 16, Theorem 2.6]. Here U(, r) is the open ball of
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radius r and center .
Define t/ and t_ as follows"

t+ lub {t;fu(4x, [0, t])c U(, r)},
t_--glb {t; fu(, [t, 0])c U(4x, r)},

where f(, [a, b])--{f(, s) s e [a, b]}. Clearly
f(, [t_, t+]) U(, r).

On the other hand, the set of all periodic points of (X, R,f) is dense
in X [1], so that we can choose a sequence of periodic points [a} which
satisfies the following conditions"

1) e U(, r) for all n e N,
2) p(a,, )0 monotone asn+.

Since as well as is not periodic by virtue of (1), we have
e U(, r)f(, [t_, t+])

for all n e N, so that
(vn e N)]s>0 U(a, s) U(, r)f(, [t_, t+]) and s <p(a, ).

Further, (1) implies that U(a, s) contains point ef(, R) for each
n e N. Let u e R be such that .=f(, u). Then

u [t_, t+] for all n e N.
Here it follows that

lim p(f(, u), )--0 ( 2 )

by virtue of the inequality
p(f(, u), ) (,) (, a) +(,)<s+(, ).

However, the sequence {u} is unbounded. For, if {u} is bounded,
then it has an ccumulation point, say v. Let [v} be a subsequence
of {u} converging to v. Then

(f(, v), )=0
follows by virtue of (2), so that

7(, v)=, ( 3 )
whereas

v (t_, t+),
since v 6[t_, t+] for all n e N. Further, v0, because t_0 and 0t+.
This fact and (3) imply that is a periodic point of (X, R,f), which
is a contradiction, since is not periodic by virtue of (1).

Thus the sequence (u} has a subsequence {w} diverging to +
or -. If {w} diverges to +, then

(f(, w), ) >0 (no + ),
so that

e L+(). ( 4 )
Since e f(, R) by the assumption, it follows from (4) that e L+ ().
Thus is positively Poisson stable. In case {w} diverges to --, we
can show in the same way as above that is negatively Poisson stable.

Q.E.D.
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Theorem 3.2. The Bebutov dynamical system (X, R,f) has an
orbit which is dense in X, positively or negatively Poisson stable, and
neither positively nor negatively receding.

For the proof we shall need the following:
Example 3.3 [1]. Let {I, i, ] e N} be a family of closed intervals

in R such that
a) lim,/ mI,= + c for all ] e N,
b) lim_+ mI,= + oo for all i e N,
c) II=, unless both i--k and ]=l

hold, where mI, is the length of I,. Since X is separable [1], it has
a countable subset S {p; k e N) which is dense in X. Let x, be the
coordinate of the midpoint of I,. Define a map 9" RR as follows"

1) 9(x)=p(x--x), x e I,
2) on the spaces between the intervals the map is defined by the

linear interpolation. Then, the orbit f(, R) is dense in X.
The proof of Theorem 3.2. Choose a family of the intervals on

the real line R which satisfy the conditions a), b)and c) in Example
3.3 as follows:
IR- I,.R+

L. to the left of I; I to the right of I;
I to the left of I; I to the right of I;

This procedure continues diagonally in the manner shown by the arrows
in the following array (Fig. 1) in which the element (i, ]), i, ] e N, is
the suffix of I,. Notice that R/ and R- each contains infinite elements
of (I k e N} and infinite elements of {I k e N} as well for all i, ] e N.
Define a map as in Example 3.3, using the family {I,} constructed as
above. Then the orbit f(9, R) is dense in X.

(1,1) (1,2)(1,3).... (1,4).:.;,:
(2 1)___(2,2).,(2,3).....(2,

(3, 1)..(3, 2)............ (3, 3 ......-(3,
(4:1)- (4, 2).,(4, 3) .(4, 4)

Fig. 1

Now we shall show that L/(9) and L-(9) are both non-empty.
There exists a subsequence of S--{p} in Example 3.3 converging to
which we denote again by {p) for simplicity’s sake. Then we have

(v>0)n0 e N; (Vk, e N; k, l>no)p(p, p)<__.
On the other hand, for any fixed i e N there exists n e N such that

mI, 2 mI, 2

for every k, e N larger than nl. Let n*=max {no, n}. Then it follows
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that for all k, e N larger than n*

p(p, p)_, mI>2 and mI> 2.
Define I,--x as follows"

I-x-{x-x x e I},
where x, is the midpoint of the interval I.

for every N such that n*, which implies that

so that

Hence

fu(, x)(t)--p(t)

i,]eN,
Then we have

max ]f(, xJ(t)--p(t)]<e,
Itl_l/

which is equivalent to the inequality
p(fu(o,xt),P)<, ]>n*

by virtue of the lemma in [1, p. 420]. Thus we have

p(f(?, x),f(, x))
<=p(f(?, x,), p) + p(p, p) + p(f(, x), p)
<__++=3, l, k>=n*,

which shows that {f(, x) ] e N} is a Cauchy sequence in Xu for each
fixed i e N. Cpnsequently this sequence is convergent in X for each
fixed i e N, since X is complete [1]. On the other hand, for each i e N
the sequence {x; ] e N} has a subsequence, say {y; ] e N}, which
diverges to + oo. Thus for each i e N the sequence {fu(, Yj); J e N}
converges while {yj; j e N} diverges to + oo. This proves L+():/:.
The proof of L-() is analogous. Q.E.D.

4. Compact invariant set in the Bebutov dynamical system. The
Bebutov-Kakutani theorem suggests us the importance of the study of
the compact invariant set in the Bebutov dynamical system.

Theorem 4.1. The compact invariant sets in the Bebutov dynam-
ical system (X, R, fu) are border sets in X.

Proof. Let K be a compact invariant set in (Xu, R,f). K is a
proper, subset of X, since X is not compact. Then we have

K Nf(o, R)= ( 1 )
for every 9 e X. such that f(o, R)=X,. For, otherwise K will contain

f.(o, R) by virtue of the invarianee of K, so that
Xu-f(?,R)cK

will follow, which is absurd.
Now assume that K contains an interior point, say 4/. has a

forallte[ 1, 1]
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neighborhood U(,r)K. There exists, however, an orbit f(?,R)
which is dense in X (see Example 3.3), so that U(, r) contains a point
of f(, R). Hence Kf(, R) is not empty, which contradicts the
equality (1). Thus the interior of K is empty, i.e., K is a border set.

Q.E.D.
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