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In 1, we study abelian extensions of complete discrete valuation
fields whose residue fields are function fields in one variable over finite
fields. In 2, we give a generalization of the result of Part I
(K. Kato [5]). The detail will appear elsewhere. Some similar results
were obtained independently by A. N. Parsin [8].

1o Let F be an algebraic function field in one variable over a
finite field, and K a complete discrete valuation field with residue field
F. We shall define the "K2-idele group" of K, which is a K-version
of the idele group in the usual class field theory. For this purpose,
let (F) be the set of all normalized discrete valuations of F. For each
v e (F), let F be the completion of F with respect to v, and Ko the
extension of K which is complete with respect to a discrete valuation
and characterized by the following properties; the restriction of the
normalized valuation ord, of K, to K coincides with the normalized
valuation of K, and the residue field of Ko is isomorphic to F, over F.
Such Ko exists and is essentially unique by Grothendieck [4, Chap. 0
19]. The K.-idele group will be defined as a kind of restricted direct

product of the groups K(K,) (v e (F)). To define this, take a triple
(A, , S) consisting of a subring A of the valuation ring O of K, a
prime element u of K, and a non-empty finite subset S of (F), such
that (1) e A and (2) the canonical homomorphism A/zcAF is injec-
tive and its image is ,e,()_s 0. Here, O, denotes the valuation
ring of v for each v. Such a triple (A, , S) exists. For each v e 3(F)
-S, let mo be themaximal ideal of A induced by v, and let A,,=li+m A/m’.
Then, Ao is canonically embedded in K. For each v e (F) and for
each n__>l, let K(Ko) be the subgroup of K(K,) generated by all
elements of the form {1 + x, y} such that x e K, ord,(x) >=n and y e K*.
For v e 3(F)--S, let Iv be the subgroup of K(K,,) generated by all
elements of the form (x, y} such that x, y e A[-]*. (The notation
denotes the group of all invertible elements of a ring.) Now, we call
an element (a)( of (K(K) a K-idele of K if and only if for
each n_>_l, there is a finite subset S of (F)containing S such that

ave L," K2(Kv) (n) for any v e (F)--S,,. We denote by AK the group of



No. 8] Local Class Field Theory 251

all K2-ideles of K. Whether an element of l-[ve(F)K2(Kv) is a K.-idele
of K or not is independent of the choice of the triple (A, =, S), and the
image of the cnonical homomorphism K2(K)- [[e(;)K.(K) is con-
tained in z/. We denote Coker(K2(K)-//) by C, which is an an-
alogue of the idele class group in the usual class field theory. We endow
A and C with the following topologies. For each n__>l, let //n)
=/1 l-[e(;) K2(K)" We endow I/A with the strongest topolog.y
which is compatible with the group structure and for which the mapp-
ing [Ies K(K)x IA/A> is continuous. Here the topologies
of K2(K) are the ones defined in [5, 4], and those of I are the ones
induced b,y the topologies of K2(K). This topology of///A( is inde-
pendent of the choice of the triple (A, z, S). We endow // with the
weakest topology for which the mappings i-+A/A are continuous
for all n>__ 1. We endow C with the quotient of the topology of
Now, we can state our result. For each v e 3(F), let " K.(K)

ab-*Gal (K/K) be the canonical homomorphism of [5, Theorem 1].
Theorem 1. Let F and K be as at the beginning of 1. Then"
(1) There exists a unique continuous homomorphism

" CGal (gb/g)
for which the following diagram is commutative for every v e 3(F).

g2(gv): O%Gal (Kb/K)

C: -Gal (K /K)
(2) For each finite abelian extension L of K, q induces an isomor-

phism C/N./L’.-Gal (L/K).
(3) The mapping LN./C. is a bi]ection from the set of all

finite abelian extensions of K in a fixed algebraic closure of K to the
set of all open subgroups of Ca of finite indices.

2.1o Here, we generalize the result of [5].
For an,y field k, let (k) (n0) be Milnor’s K-groups defined in

Milnor [7] (which were denoted b.y Kk in [7]), i.e.,
n-times

(k)=(k*(R)...(R)k*)/J,
where J denotes the subgroup of the tensor product generated b: all
elements of the form x(R)... (R)x satisfying x+x=1 with i and ] such
that i#]. For an$ x,..., x e/*, the element x(R)...(R)x mod J of
t(k) is denoted b,y {x, ..., x}. On the other hand, for any ring R,
let K(R) (n>=O) be Quillen’s K-groups in Quillen [9]. If k is a field,
there is a canonical homomorphism " (k)-+K(k) (the product
defined in Loda$ [6]). This is bijective when n__<2, but not always
so in the general case.

If E is a finite extension of field k, there is a transfer map K.(E)
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-K.(k) ([9, 4]), which we denote by N/. Concerning the -groups,
if E is

(.) a composite field of a finite abelian extensio and a finite
purely in separable extension

of k, we can define a canonical homomorphism /" ,(E)-t.(k)
characterized b.y the following"

(1) If kFE and the extension Elk is of the ttpe (.) above,

(2) If E is a normal extension of k of a prime degree, / coin-
cides with the homomorphism N/ of Bass and Tare [1, 5] 2or any
choice of a such that E=k(a). These homomorphisms N/ and
satisfy N/ =

Now, our results are the following two theorems.
Theorem 2. Let nO and let Fo,...,F be fields having the

following properties"
(1) Fo is a finite field.
(2) For each i=1, ..., n, F is complete with respect to a discrete

valuation and the residue field of Ft is F_.
Then, there exists a unique system () which assigns to each

finite extension K of F a homomorphism " (K)Gal (K/K)
satisfying the following conditions (3) and (4).

(3) Let K and L be finite extensions of F, and f an F-homomor-
phism KL. If the extension f is of the type (.) (resp. is separable),
the following diagram (i) (resp. (ii)) is commutative. Here, the vertical
arrows in the diagrams are the ones induced by the extension f

(L) (KGal (L/L) (K) Gal /K)
(i) /K ;restriction, (ii) transfer.

(K) )Gal (K/K) (L) Gal (L/L)
(4) Let be a lifting to F of a prime element of F for each

i=1, ..., n. Then, the image of ({z, ., Un}) under the canonical
homomorphism Gal (F/F)Gal (F]/Fo) coincides with the Frobenius
automorphism over Fo.

Furthermore, this system () satisfies"
(5) If the extension f in (3) is abelian, the diagram (i)induces

an isomorphism (K)/ /(L) Gal (L /K).
Theorem . Besides the hypothesis of Theorem 2, suppose that

the characteristic ch(F) of F is pO. Then, there exists a system
(Y) which assigns to each finite extension K of F a homomorphism

Y" K(K)Gal (K/K) satisfying the following conditions.
(1) Let K and L be finite extensions of F and f an F-homomor-

phism KL. Then, the diagram (i) (resp. if f is separable, the dia-
gram (ii)) in Theorem 1 is commutative when we replace ,/ and
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by Kn, Nz/ and ’, respectively.
(2) The composite ’ coincides with in Theorem 1.
2.2. The construction of the homomorphism in the case

ch (F)--O. The key tool is the following definition o a homomorphism
called the cohomological residue. For any discrete valuation field k,
let O be the valuation ring of k, m the maximal ideal of 0, and the
residue field of k. Now, suppose that / and K are complete discrete
valuation fields o characteristic zero such that kK and such that
the following conditions (a), (b) and (c) are satisfied.

(a) The inclusion kK satisfies 00 and mm.
(b) K is a henselian discrete valuation field whose valuation ring

contains and whose residue field/ is a finite extension of .
(c) The transcendental degree o K over k is one.

(The conditions (b) and (c) are satisfied, or example, i K is the alge-
braic closure o k(X) in the field o formal power series k((X)).) Fix
integers i_>_0, m=>l, and r. We now define a homomorphism H/(K,
/(r/l))-H(k,/), called the cohomological residue. Here/_/m denotes
the r-th tensor power of/ over Z/mZ.

First, let t/" K*-Z be the homomorphism characterized by the
ollowing properties"

(1) If x e 0", and if e denotes ord () for prime elements u of k,
t(x)--[/" ]. e.ord (x rood m). (ord denotes the normalized addi-
tive valuation.)

(2) t(k*)=0.
Next, let k be the algebraic closure of k. We can show that there is a
Gal (k/k)-homomorphism T/’(k(R)K)*Z characterized by the
ollowing property" If E is a finite extension of k, and if E(R)K= I-[ K
a ,finite product of fields, the restriction of T/ to K coincides with

t/. On the other hand, we can deduce from the condition (9) that
the composite field k.K over k is of cohomological dimension one (cf.
Serre [10, Chap. II 4]). By this, we obtain the desired cohomological
residue as follows.

H+I(K, ]u@(r+l))__H(, /ur@(Ics@K)*)
by TKH(k,

Now, let n__> 1 and let F0, ., F be as in Theorem 2. Suppose that
ch (Fn)=0. To construct the homomorphism q), we may assume that
K--F without loss of generality. Let X be the character group o
Gal (K/K). Let m__>l, and a the composite

c(R)h’
Hi(K,(Xc) (R) n(K)/(K) > Z/mZ)(R)Hn(K, )(R)

cu,

where (X) denotes the kernel o the multiplication by m on X, c
denotes the canonical isomorphism (X) - H(K, Z/mZ), and h
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denotes the homomorphism (K)/n(K)--+H(K,/) defined in the
same way as Tate’s Galois symbol (Tate [11]). On the other hand, let
be the homomorphism

1 Z/Z_(Xo)_H/(K,/) Zc() t2 h)({l, ..., }),
m

where ) denotes the canonical lifting of e (Xr0) to (X), denotes
a lifting of a prime element of F to K for each i, and denotes the
cup product. This homomorphism fl is independent of the choices of
of such ,.. ",Un. By some computation of the homomorphisms

/" (L)-(K) for finite cyclic extensions L/K, we can prove that
the image of a is contained in the image of ft. Furthermore, we can
deduce from Lemma i below that fl is injective. Hence, we have a
canonical homomorphism

" (Xx) n(g)/(g) I-z/z.
m

When m varies, this r induces the desired canonical homomorphism

" (K)-Gal (K/K).
Lemma 1. Let k and K be complete discrete valuation fields of

characteristic zero such that lcK, and such that the above condition
(a) and the following conditions (d) and (e) are satisfied.

(d) A prime element of k is still a prime element in K.
(e) There is an isomorphism O" k((X))-K over k.

Let r be a lifting of O(X) to 0. Then, for any i>=O, m>=l, and r, the
homomorphism

H(k, (R)r + ) X--X J (T)a )-g I(K, fl@m(r + ) h
is in]ective.

Indeed, if ((X)) is replaced by the algebraic closure ((X)) of
(X) in ((X)), the cohomological residue gives the left inverse of the
above homomorphism. We can proceed from ((X)) to ((X)), essen-
tially because any finitely generated subring A of ((X)) over ((X))
has a ring homomorphism A-k((X)) over k((X)).

2.:. The construction of the pro.i0.part of the homomorphism
/’x int he case ch (Fn)=P>0. The main tool is the following generaliza-
tion of the definition of the residue homomorphism by using K-groups.
Let A--.B be a flat homomorphism between commutative rings. Sup-
pose that is a non-zero-divisor in B such that Blab is finitely
generated and projective as an A-module. Let H be the category of
B-modules which admit a resolution of length 1 by finitely generated
projective B-modules and on which the action of is nilpotent. Then,
we can define a homomorphism Kq+(B[-])Kq(A) for each q>0,
as the composite of the homomorphism Kq+(B[=-’])Kq(H) defined by
the localization theorem for projective modules of Grayson [3], and the
homomorphism Kq(H)-Kq(A) defined by regarding the objects of H
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as finitely generated and projective A-modules. By replacing A and
B by A[T]/(T") and B[T]/(T") respectively for each m>__l, we obtain
a homomorphism, called the residue,

Resq/l" gq/l(B[r-l])gq(A),
where CK(R) denotes

lim Ker (K(R[T]/(T))K(R))
for any ring R as in Bloch [2].

Now, let F (O<=i<=n) be as in Theorem 3, and let K--F. We give
here the pro-p-part of the homomorphism . For each i, fix a ring
homomorphism t" F--O/, such that t(x) modm/=x or all x e F.
We apply the above definition of the residue to the case in which A
--:F, B=O/,, and is a prime element of F/. Then, the composite

gn+,(Fn) Resn gn(rn_) nesn-1 transfe>... > Cgl(Fo) CK(Z/pZ)
is independent of the choices of t (0_<_ i n). On the other hand, for any
commutative ring R of characteristic p, let W()(R) be the group of p-
Witt vectors regarded as a subgroup of K(R) ([2, I 1 (3.2)]). Then

induces a pairing
W(’)(K)(R)K(K)W’)(Z/pZ)K(Z/pZ) w(R)aO({w, a}),

and for each r if denotes the Frobenius homomorphism, a pairing
0,." W,.(K)/(1-)W,.(K) (R) Kn(K) W,.(Z/pZ)--Z/p’Z.

When r varies, by Witt theory [12], these homomorphism O, give a
homomorphism rom K,(K) to the pro-p-part of Gal (K/K), which is
the pro-p-part of the homomorphism 2.
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