64. A Generalization of Local Class Field Theory by Using K-Groups. II

By Kazuya Kato
Department of Mathematics, Faculty of Science, University of Tokyo, Hongo, Tokyo
(Communicated by Kunihiko Kodaira, m. J. A., Oct. 12, 1978)

In § 1, we study abelian extensions of complete discrete valuation fields whose residue fields are function fields in one variable over finite fields. In § 2, we give a generalization of the result of Part I (K. Kato [5]). The detail will appear elsewhere. Some similar results were obtained independently by A. N. Parsin [8].
§ 1. Let F be an algebraic function field in one variable over a finite field, and K a complete discrete valuation field with residue field F. We shall define the " K_{2}-idele group" of K, which is a K_{2}-version of the idele group in the usual class field theory. For this purpose, let $\mathfrak{P}(F)$ be the set of all normalized discrete valuations of F. For each $v \in \mathfrak{P}(F)$, let F_{v} be the completion of F with respect to v, and K_{v} the extension of K which is complete with respect to a discrete valuation and characterized by the following properties; the restriction of the normalized valuation $\operatorname{ord}_{K_{v}}$ of K_{v} to K coincides with the normalized valuation of K, and the residue field of K_{v} is isomorphic to F_{v} over F. Such K_{v} exists and is essentially unique by Grothendieck [4, Chap. 0 $\S 19]$. The K_{2}-idele group will be defined as a kind of restricted direct product of the groups $K_{2}\left(K_{v}\right)(v \in \mathfrak{P}(F))$. To define this, take a triple (A, π, S) consisting of a subring A of the valuation ring O_{K} of K, a prime element π of K, and a non-empty finite subset S of $\mathfrak{P}(F)$, such that (1) $\pi \in A$ and (2) the canonical homomorphism $A / \pi A \rightarrow F$ is injective and its image is $\bigcap_{v \in \mathfrak{R}(F)-S} O_{v}$. Here, O_{v} denotes the valuation ring of v for each v. Such a triple (A, π, S) exists. For each $v \in \mathfrak{P}(F)$ $-S$, let m_{v} be the maximal ideal of A induced by v, and let $A_{v}=\lim A / m_{v}^{n}$. Then, A_{v} is canonically embedded in K_{v}. For each $v \in \mathfrak{P}(F)$ and for each $n \geqq 1$, let $K_{2}\left(K_{v}\right)^{(n)}$ be the subgroup of $K_{2}\left(K_{v}\right)$ generated by all elements of the form $\{1+x, y\}$ such that $x \in K_{v}$, $\operatorname{ord}_{K_{v}}(x) \geqq n$ and $y \in K_{v}^{*}$. For $v \in \mathfrak{B}(F)-S$, let I_{v} be the subgroup of $K_{2}\left(K_{v}\right)$ generated by all elements of the form $\{x, y\}$ such that $x, y \in A_{v}\left[\pi^{-1}\right] *$. (The notation $*$ denotes the group of all invertible elements of a ring.) Now, we call an element $\left(a_{v}\right)_{v \in \mathfrak{B}(F)}$ of $\prod_{v \in \mathfrak{B}(F)} K_{2}\left(K_{v}\right)$ a K_{2}-idele of K if and only if for each $n \geqq 1$, there is a finite subset S_{n} of $\mathfrak{P}(F)$ containing S such that $a_{v} \in I_{v} \cdot K_{2}\left(K_{v}\right)^{(n)}$ for any $v \in \mathfrak{B}(F)-S_{n}$. We denote by Λ_{K} the group of
all K_{2}-ideles of K. Whether an element of $\prod_{v \in \mathfrak{P}\left(F^{F}\right)} K_{2}\left(K_{v}\right)$ is a K_{2}-idele of K or not is independent of the choice of the triple (A, π, S), and the image of the canonical homomorphism $K_{2}(K) \rightarrow \prod_{v \in \mathfrak{B}(F)} K_{2}\left(K_{v}\right)$ is contained in Λ_{K}. We denote $\operatorname{Coker}\left(K_{2}(K) \rightarrow \Lambda_{K}\right)$ by \mathcal{C}_{K}, which is an analogue of the idele class group in the usual class field theory. We endow Λ_{K} and \mathcal{C}_{K} with the following topologies. For each $n \geqq 1$, let $\Lambda_{K}^{(n)}$ $=\Lambda_{K} \cap \prod_{v \in \mathfrak{B}(F)} K_{2}\left(K_{v}\right)^{(n)}$. We endow $\Lambda_{K} / \Lambda_{K}^{(n)}$ with the strongest topology which is compatible with the group structure and for which the mapping $\prod_{v \in S} K_{2}\left(K_{v}\right) \times \prod_{v \notin S} I_{v} \rightarrow \Lambda_{K} / \Lambda_{K}^{(n)}$ is continuous. Here the topologies of $K_{2}\left(K_{v}\right)$ are the ones defined in [5, §4], and those of I_{v} are the ones induced by the topologies of $K_{2}\left(K_{v}\right)$. This topology of $\Lambda_{K} / \Lambda_{K}^{(n)}$ is independent of the choice of the triple (A, π, S). We endow Λ_{K} with the weakest topology for which the mappings $\Lambda_{K} \rightarrow \Lambda_{K} / \Lambda_{K}^{(n)}$ are continuous for all $n \geqq 1$. We endow \mathcal{C}_{K} with the quotient of the topology of Λ_{K}. Now, we can state our result. For each $v \in \mathfrak{R}(F)$, let $\Phi_{K_{v}}: K_{2}\left(K_{v}\right)$ $\rightarrow \operatorname{Gal}\left(K_{v}^{\mathrm{ab}} / K_{v}\right)$ be the canonical homomorphism of [5, Theorem 1].

Theorem 1. Let F and K be as at the beginning of §1. Then:
(1) There exists a unique continuous homomorphism

$$
\Phi: \mathcal{C}_{K} \rightarrow \mathrm{Gal}\left(K^{\mathrm{ab}} / K\right)
$$

for which the following diagram is commutative for every $v \in \mathfrak{B}(F)$.

(2) For each finite abelian extension L of K, Φ induces an isomorphism $\mathcal{C}_{K} / N_{L / K} \mathcal{C}_{L} \cong \operatorname{Gal}(L / K)$.
(3) The mapping $L \mapsto N_{L / K} \mathcal{C}_{L}$ is a bijection from the set of all finite abelian extensions of K in a fixed algebraic closure of K to the set of all open subgroups of \mathcal{C}_{K} of finite indices.
§2.1. Here, we generalize the result of [5].
For any field k, let $\Re_{n}(k)(n \geqq 0)$ be Milnor's K-groups defined in Milnor [7] (which were denoted by $K_{n} k$ in [7]), i.e.,

$$
\Re_{n}(k)=(\overbrace{k^{*} \otimes \cdots \otimes k^{*}}^{n \text {-times }}) / J,
$$

where J denotes the subgroup of the tensor product generated by all elements of the form $x_{1} \otimes \cdots \otimes x_{n}$ satisfying $x_{i}+x_{j}=1$ with i and j such that $i \neq j$. For any $x_{1}, \cdots, x_{n} \in k^{*}$, the element $x_{1} \otimes \cdots \otimes x_{n} \bmod J$ of $\mathscr{R}_{n}(k)$ is denoted by $\left\{x_{1}, \cdots, x_{n}\right\}$. On the other hand, for any ring R, let $K_{n}(R)(n \geqq 0)$ be Quillen's K-groups in Quillen [9]. If k is a field, there is a canonical homomorphism $\iota_{k}: \Re_{n}(k) \rightarrow K_{n}(k)$ (the product defined in Loday [6]). This ι_{k} is bijective when $n \leqq 2$, but not always so in the general case.

If E is a finite extension of a field k, there is a transfer map $K_{*}(E)$
$\rightarrow K_{*}(k)([9, \S 4])$, which we denote by $N_{E / k}$. Concerning the \AA-groups, if E is
(*) a composite field of a finite abelian extension and a finite purely in separable extension
of k, we can define a canonical homomorphism $\mathfrak{R}_{E / k}: \mathfrak{R}_{*}(E) \rightarrow \mathfrak{\Re}_{*}(k)$ characterized by the following :
(1) If $k \subset F \subset E$ and the extension E / k is of the type (*) above, $\mathfrak{n}_{F / k} \circ \mathfrak{N}_{E / F}=\mathfrak{N}_{E / k}$.
(2) If E is a normal extension of k of a prime degree, $\mathfrak{n}_{E / k}$ coincides with the homomorphism $N_{\alpha / k}$ of Bass and Tate [1, §5] for any choice of α such that $E=k(\alpha)$. These homomorphisms $N_{E / k}$ and $\Re_{E / k}$ satisfy $N_{E / k} \circ \iota_{E}=\iota_{k} \circ \mathfrak{M}_{E / k}$.

Now, our results are the following two theorems.
Theorem 2. Let $n \geqq 0$ and let F_{0}, \cdots, F_{n} be fields having the following properties:
(1) F_{0} is a finite field.
(2) For each $i=1, \cdots, n, F_{i}$ is complete with respect to a discrete valuation and the residue field of F_{i} is F_{i-1}.

Then, there exists a unique system $\left(\Phi_{K}\right)_{K}$ which assigns to each finite extension K of F_{n} a homomorphism $\Phi_{K}: \Re_{n}(K) \rightarrow \mathrm{Gal}\left(K^{\mathrm{ab}} / K\right)$ satisfying the following conditions (3) and (4).
(3) Let K and L be finite extensions of F_{n}, and f an F_{n}-homomorphism $K \rightarrow L$. If the extension f is of the type (*) (resp. is separable), the following diagram (i) (resp. (ii)) is commutative. Here, the vertical arrows in the diagrams are the ones induced by the extension f.

(4) Let π_{i} be a lifting to F_{n} of a prime element of F_{i} for each $i=1, \cdots, n$. Then, the image of $\Phi_{F_{n}}\left(\left\{\pi_{1}, \cdots, \pi_{n}\right\}\right)$ under the canonical homomorphism $\operatorname{Gal}\left(F_{n}^{\mathrm{ab}} / F_{n}\right) \rightarrow \mathrm{Gal}\left(F_{0}^{\mathrm{ab}} / F_{0}\right)$ coincides with the Frobenius automorphism over F_{0}.

Furthermore, this system $\left(\Phi_{K}\right)_{K}$ satisfies:
(5) If the extension f in (3) is abelian, the diagram (i) induces an isomorphism $\mathfrak{\Re}_{n}(K) / \Re_{L / K} \mathfrak{\Re}_{n}(L) \cong \operatorname{Gal}(L / K)$.

Theorem 3. Besides the hypothesis of Theorem 2, suppose that the characteristic $\operatorname{ch}\left(F_{n}\right)$ of F_{n} is $p>0$. Then, there exists a system $\left(\Upsilon_{K}\right)_{K}$ which assigns to each finite extension K of F_{n} a homomorphism $\gamma_{K}: K_{n}(K) \rightarrow \mathrm{Gal}\left(K^{\mathrm{ab}} / K\right)$ satisfying the following conditions.
(1) Let K and L be finite extensions of F_{n} and f an F_{n}-homomorphism $K \rightarrow L$. Then, the diagram (i) (resp. if f is separable, the diagram (ii)) in Theorem 1 is commutative when we replace $\mathfrak{R}_{n}, \Re_{L / K}$ and
Φ by $K_{n}, N_{L / K}$ and Υ, respectively.
(2) The composite $\Upsilon_{K} \circ \iota_{K}$ coincides with Φ_{K} in Theorem 1.
§2.2. The construction of the homomorphism Φ_{K} in the case $\operatorname{ch}\left(F_{n}\right)=0$. The key tool is the following definition of a homomorphism called the cohomological residue. For any discrete valuation field k, let O_{k} be the valuation ring of k, m_{k} the maximal ideal of O_{k}, and \bar{k} the residue field of k. Now, suppose that k and K are complete discrete valuation fields of characteristic zero such that $k \subset K$ and such that the following conditions (a), (b) and (c) are satisfied.
(a) The inclusion $k \subset K$ satisfies $O_{k} \subset O_{K}$ and $m_{k} \subset m_{K}$.
(b) \bar{K} is a henselian discrete valuation field whose valuation ring contains \bar{k} and whose residue field $\overline{\bar{K}}$ is a finite extension of \bar{k}.
(c) The transcendental degree of \bar{K} over \bar{k} is one.
(The conditions (b) and (c) are satisfied, for example, if \bar{K} is the algebraic closure of $\bar{k}(X)$ in the field of formal power series $\bar{k}((X))$.) Fix integers $i \geqq 0, m \geqq 1$, and r. We now define a homomorphism $H^{i+1}(K$, $\left.\mu_{m}^{\otimes(r+1)}\right) \rightarrow H^{i}\left(k, \mu_{m}^{\otimes r}\right)$, called the cohomological residue. Here $\mu_{m}^{\otimes r}$ denotes the r-th tensor power of μ_{m} over $\boldsymbol{Z} / m \boldsymbol{Z}$.

First, let $t_{K / k}: K^{*} \rightarrow \boldsymbol{Z}$ be the homomorphism characterized by the following properties:
(1) If $x \in O_{K}^{*}$, and if e denotes $\operatorname{ord}_{K}(\pi)$ for prime elements π of k, $t_{K / k}(x)=[\overline{\bar{K}}: \bar{k}] \cdot e \cdot \operatorname{ord}_{\bar{R}}\left(x \bmod m_{K}\right)$. (ord denotes the normalized additive valuation.)
(2) $t_{K / k}\left(k^{*}\right)=0$.

Next, let k_{s} be the algebraic closure of k. We can show that there is a Gal $\left(k_{s} / k\right)$-homomorphism $T_{K / k}:\left(k_{s} \otimes_{k} K\right)^{*} \rightarrow \boldsymbol{Z}$ characterized by the following property : If E is a finite extension of k, and if $E \otimes_{k} K=\Pi_{j} K_{j}$ a finite product of fields, the restriction of $T_{K / k}$ to K_{j}^{*} coincides with $t_{K_{j / E}}$. On the other hand, we can deduce from the condition (9) that the composite field $k_{s} \cdot K$ over k is of cohomological dimension one (cf. Serre [10, Chap. II §4]). By this, we obtain the desired cohomological residue as follows.

$$
H^{i+1}\left(K, \mu_{m}^{\otimes(r+1)}\right) \cong H^{i}\left(k, \mu_{m}^{\otimes r} \otimes\left(k_{s} \otimes_{k} K\right)^{*}\right) \xrightarrow{\text { by } T_{K / k}} H^{i}\left(k, \mu_{m}^{\otimes r}\right) .
$$

Now, let $n \geqq 1$ and let F_{0}, \cdots, F_{n} be as in Theorem 2. Suppose that $\operatorname{ch}\left(F_{n}\right)=0$. To construct the homomorphism Φ_{K}, we may assume that $K=F_{n}$ without loss of generality. Let X_{K} be the character group of Gal $\left(K^{\text {ab }} / K\right)$. Let $m \geqq 1$, and α the composite

$$
\left(X_{K}\right)_{m} \otimes \Re_{n}(K) / \Re_{n}(K)^{m} \xrightarrow{c \otimes h_{m}^{(n)}} H^{1}(K, \boldsymbol{Z} / m \boldsymbol{Z}) \otimes H^{n}\left(K, \mu_{m}^{\otimes n}\right)
$$

where $\left(X_{K}\right)_{m}$ denotes the kernel of the multiplication by m on X_{K}, c denotes the canonical isomorphism $\left(X_{K}\right)_{m} \cong H^{1}(K, Z / m Z)$, and $h_{m}^{(n)}$
denotes the homomorphism $\Re_{n}(K) / \Re_{n}(K)^{m} \rightarrow H^{n}\left(K, \mu_{m}^{\otimes n}\right)$ defined in the same way as Tate's Galois symbol (Tate [11]). On the other hand, let β be the homomorphism

$$
\frac{1}{m} Z / Z \cong\left(X_{F_{0}}\right)_{m} \rightarrow H^{n+1}\left(K, \mu_{m}^{\otimes n}\right) ; \chi \mapsto c(\tilde{\chi}) \cup h_{m}^{(n)}\left(\left\{\pi_{1}, \cdots, \pi_{n}\right\}\right),
$$

where $\tilde{\chi}$ denotes the canonical lifting of $\chi \in\left(X_{F_{0}}\right)_{m}$ to $\left(X_{K}\right)_{m}, \pi_{i}$ denotes a lifting of a prime element of F_{i} to K for each i, and U denotes the cup product. This homomorphism β is independent of the choices of of such π_{1}, \cdots, π_{n}. By some computation of the homomorphisms $\mathfrak{R}_{L / K}: \mathfrak{R}_{n}(L) \rightarrow \mathfrak{R}_{n}(K)$ for finite cyclic extensions L / K, we can prove that the image of α is contained in the image of β. Furthermore, we can deduce from Lemma 1 below that β is injective. Hence, we have a canonical homomorphism

$$
\gamma:\left(X_{K}\right)_{m} \otimes \Re_{n}(K) / \Re_{n}(K)^{m} \rightarrow \frac{1}{m} Z / Z .
$$

When m varies, this γ induces the desired canonical homomorphism

$$
\Phi_{K}: \Re_{n}(K) \rightarrow \operatorname{Gal}\left(K^{\mathrm{ab}} / K\right) .
$$

Lemma 1. Let k and K be complete discrete valuation fields of characteristic zero such that $k \subset K$, and such that the above condition (a) and the following conditions (d) and (e) are satisfied.
(d) A prime element of k is still a prime element in K.
(e) There is an isomorphism $\theta: \bar{k}((X)) \cong \bar{K}$ over \bar{k}.

Let τ be a lifting of $\theta(X)$ to O_{K}. Then, for any $i \geqq 0, m \geqq 1$, and r, the homomorphism

$$
H^{i}\left(k, \mu_{m}^{\otimes r}\right) \rightarrow H^{i+1}\left(K, \mu_{m}^{\otimes(r+1)}\right) ; x \mapsto x \cup h_{m}^{(1)}(\tau)
$$

is injective.
Indeed, if $\bar{k}((X))$ is replaced by the algebraic closure $\bar{k}((X))^{\circ}$ of $\bar{k}(X)$ in $\bar{k}((X))$, the cohomological residue gives the left inverse of the above homomorphism. We can proceed from $\bar{k}((X))^{\circ}$ to $\bar{k}((X))$, essentially because any finitely generated subring A of $\bar{k}((X))$ over $\bar{k}((X))^{\circ}$ has a ring homomorphism $A \rightarrow \bar{k}((X))^{\circ}$ over $\bar{k}((X))^{\circ}$.
$\S 2.3$. The construction of the pro-p-part of the homomorphism γ_{K} int he case $\operatorname{ch}\left(\mathrm{F}_{n}\right)=\boldsymbol{p}>\boldsymbol{0}$. The main tool is the following generalization of the definition of the residue homomorphism by using K-groups. Let $A \rightarrow B$ be a flat homomorphism between commutative rings. Suppose that π is a non-zero-divisor in B such that $B / \pi B$ is finitely generated and projective as an A-module. Let H be the category of B-modules which admit a resolution of length 1 by finitely generated projective B-modules and on which the action of π is nilpotent. Then, we can define a homomorphism $K_{q+1}\left(B\left[\pi^{-1}\right]\right) \rightarrow K_{q}(A)$ for each $q \geqq 0$, as the composite of the homomorphism $K_{q+1}\left(B\left[\pi^{-1}\right]\right) \rightarrow K_{q}(H)$ defined by the localization theorem for projective modules of Grayson [3], and the homomorphism $K_{q}(H) \rightarrow K_{q}(A)$ defined by regarding the objects of H
as finitely generated and projective A-modules. By replacing A and B by $A[T] /\left(T^{m}\right)$ and $B[T] /\left(T^{m}\right)$ respectively for each $m \geqq 1$, we obtain a homomorphism, called the residue,

$$
\operatorname{Res}_{q+1}: \hat{C} K_{q+1}\left(B\left[\pi^{-1}\right]\right) \rightarrow \hat{C} K_{q}(A),
$$

where $\hat{C} K_{q}(R)$ denotes

$$
\lim _{\leftarrow} \operatorname{Ker}\left(K_{q}\left(R[T] /\left(T^{m}\right)\right) \rightarrow K_{q}(R)\right)
$$

for any ring R as in Bloch [2].
Now, let $F_{i}(0 \leqq i \leqq n)$ be as in Theorem 3, and let $K=F_{n}$. We give here the pro-p-part of the homomorphism Υ_{K}. For each i, fix a ring homomorphism $\theta_{i}: F_{i} \rightarrow O_{F_{i+1}}$ such that $\theta_{i}(x) \bmod m_{F_{i+1}}=x$ for all $x \in F_{i}$. We apply the above definition of the residue to the case in which A $=F_{i}, B=O_{F_{i+1}}$, and π is a prime element of F_{i+1}. Then, the composite Θ;

$$
\hat{C} K_{n+1}\left(F_{n}\right) \xrightarrow{\operatorname{Res}_{n}} \hat{C} K_{n}\left(F_{n-1}\right) \xrightarrow{\operatorname{Res}_{n-1}} \cdots \xrightarrow{C} K_{1}\left(F_{0}\right) \xrightarrow{\text { transfer }} \hat{C} K_{1}(\boldsymbol{Z} / p Z)
$$

is independent of the choices of $\theta_{i}(0 \leqq i<n)$. On the other hand, for any commutative ring R of characteristic p, let $W^{(p)}(R)$ be the group of p Witt vectors regarded as a subgroup of $\hat{C} K_{1}(R)([2, ~ I ~ § 1$ (3.2)]). Then Θ induces a pairing

$$
W^{(p)}(K) \otimes K_{n}(K) \rightarrow W^{(p)}(\boldsymbol{Z} / p \boldsymbol{Z}) \subset \hat{C} K_{1}(\boldsymbol{Z} / p \boldsymbol{Z}) ; \quad w \otimes a \mapsto \Theta(\{w, a\}),
$$

and for each r if \mathscr{F} denotes the Frobenius homomorphism, a pairing

$$
\Theta_{r}: W_{r}(K) /(1-\mathscr{F}) W_{r}(K) \otimes K_{n}(K) \rightarrow W_{r}(\boldsymbol{Z} / p \boldsymbol{Z})=\boldsymbol{Z} / p^{r} \boldsymbol{Z}
$$

When r varies, by Witt theory [12], these homomorphism Θ_{r} give a homomorphism from $K_{n}(K)$ to the pro-p-part of $\operatorname{Gal}\left(K^{\mathrm{ab}} / K\right)$, which is the pro-p-part of the homomorphism Υ_{K}.

References

[1] H. Bass and J. Tate: The Milnor ring of a global field. Lect. Notes in Math., Springer-Verlag, Berlin, vol. 342, pp. 349-446 (1972).
[2] S. Bloch: Algebraic K-theory and crystalline cohomology. Publ. Math. I.H.E.S., 47, 187-268 (1978).
[3] D. Grayson: Higher algebraic K-theory. II. Lect. Notes in Math., SpringerVerlag, Berlin, vol. 551, pp. 217-240 (1976).
[4] A. Grothendieck: Eléments de géométrie algébrique. IV. Première partie, Publ. Math. I.H.E.S., 20 (1964).
[5] K. Kato: A generalization of local class field theory by using K-groups. I. Proc. Japan Acad., 53, 140-143 (1977).
[6] J.-L. Loday: K-théorie algébrique et représentations de groupes. Ann. Sci. Éc. Norm. Sup., 4ème série, 9 (3) (1976).
[7] J. Milnor: Algebraic K-theory and quadratic forms. Invent. Math., 9, 318344 (1970).
[8] A.-N. Parsin: Class field theory for arithmetical schemes (preprint).
[9] D. Quillen: Higher algebraic K-theory. I. Lect. Notes in Math., SpringerVerlag, Berlin, vol. 341, pp. 85-147 (1972).
[10] J.-P. Serre: Cohomologie Galoisienne. Springer-Verlag, Berlin (1964).
[11] J. Tate: Symbols in arithmetic. Actes du Congrès International des Mathématiciens 1970, Gauthier-Villars, Paris, vol.1, pp. 201-211 (1971).
[12] E. Witt: Zyklische Körper und Algebren der Charakteristik p vom Grade p^{n}. J. Reine Angew. Math., 176, 126-140 (1936).

