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1. Introduction. Our purpose is to make some error analysis
on the difference finite element approximation for the parabolic equa-
tion.

Let t be a bounded domain in R whose boundary t9 is smooth,
and let -- be a uniformly elliptic differential operator of second
order with smooth coefficients.

(1.1) --=,= a(t, x) OxO .+= b(t, x)Oxi
+c(t, x).

We consider the following parabolic equation

(1.2) u +u=0 (0<t<T, x e/2)
Ot

with the boundary condition

(1.3) u=0 (0<t<T, x e Or0)
and with an initial condition
(1.4) ult=o=(x) (x e 9).

Assuming e X=L(/2), we can reduce the equation (1.2) with
(1.3) and (1.4) to the following evolution equation

(1.5) dU+A(t)u-O (0<t<T)
dt

with
(.6)
in X.

u(0) =.
Here the operator A(t) is. the m-sectorial operator associated

with the following sesqui-linear form at(, ) on V x V, where V--H(2)

(1.7) at(u,v)-- , y a(t,x) u vdx--, bj(t x) u.vdx
i,j=l Xj X j=l Xj

--[" c(t, x)u. vdx (u, v e V).
J

In order to discretize the equation (1.5) with (1.6), we introduce
an approximate space V for each h0 by triangulating /2 regularly
with the size parameter h and adopting piecewise linear trial functions
in the usual manner. As for precise definition of V, particularly in
the case of curved boundaries., see Zlmal [7]. Here we note only that
V satisfies the following three conditions:
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i) V is of finite dimensional.
ii) V V.

iii) The estimate
inf ;-v II1 Ch v 112 (v e H2() V)

holds, true.
Here and hereafter the symbol C stands, for a generic positive

constant. Firstly we consider the equation

(1.8) du /A(t)u-O (Ot< T)
dt

with
(1.9) u(0)=P
in V, as a semi-discretization of the equation (1.5) with (1.6). Here
the operator A(t) V-Va is the m-sectorial operator associated with

atl through the identity"
(1.10) at(u, v)--(A(t)u, v) (u, v e V),
where (,) is the L-inner product. P is the orthogonal projection
in X.

Furthermore we discretize the time variable as well as. the space
variables. We consider the equation
(1.11) u(t+r)--u(t)+rA(t+r)u(t+r)=O (t=nr, n=0, 1,2, ...)
with
(1.12) u(0)=Po
for a small positive parameter r. The solution u--u(t) of the equa-
tion (1.11) with (1.12) is. called the backward difference finite element
approximation of the solution u=u(t) of the equation (1.5) with (1.6).

We want to estimate the error u(t)-u(t) in L-norm. To this
end we estimate u(t) u(t) llo and u(t) u(t)Iio, while the estimate
(1.13) Ilu(t)-u(t)llo<Ch/t I111o (Ot< T)
is already known. See, Fujita-Suzuki [2] and Suzuki [5], [6]. See
also Fujita-Mizutani [1] and Helfrich [3], for more restricted results.

In this paper, the estimate
(1.14) ]lui(t)--u(t)][o< Cr(v/t)i-r [[01] (t=nr) (0<,<1)
is. derived with a constant C>0 depending on -, which gives our final
estimate
(1.15) I[u(t)-u(t)l[o<C(h/t+(r/t)-0 I[01[0 (t=nr) (0<,<1).

2. Theorems on generation and approximation of evolution
operators. The following theorem is. due to Kato-Tanabe [4].

Theorem 1. Suppose that the operator A(t) (O<t<T) in X, a
Banach space, satisfies the following four conditions.

(A0) A(t) is a densely defined closed linear operator on X whose
resolvent set p(A(t)) contains the set G:

G={2 e C; [arg 2[01} U {0}
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with the inequality
(2.1) II(--A(t))-II<M/(II+ 1) ( e G, t e [0, T]).

(A1) A(t)- is continuously diferentiable in t with respect to the
operator norm in X.

(A2) The inequality

(2.2) --tA(t)-’- dA(s)-ds K [t--s]" (t, s e [0, T])

holds with K> 0 and in 0< 1.
(A3) The inequality

(2.3) -t (--A(t))-’ <N/II" ( e G, t e [0, T])

holds with N>0 and p in 0<p 1.
Then A(t) generates a family of evolution operators" X--.X o/C1-

class which is denoted by {U(t, s)}.
We can make use of Theorem I not only to construct u(t), the

solution of (1.8) and (1.9), but also to derive the estimate for u(t) uni-
form in h. That is, we have the following

Theorem 2. Let X, V be a couple o/ Hilbert spaces with con-
tinuous inclusion V >X and {V} be a family of finite dimensional
spaces contained in V. And let at( )" V }( V-C be a given sesqui-
linear form satisfying the following inequaliti’es with constants C>0
and >0"
(2.4) at(u, v) C u ll v I1 (u, v e V)
(2.5) Re a(u, u)>/ llull (u e Y).
Suppose that another sesqui-linear form (tt( )" V }( V---C exists and
satisfies the following inequalities"
(2.6) ]dt(u, v) l< C u [l" v II (u, v e V)
(2.7) at(u, v) ds(u, v)]< C It sill u IIv" v I[" (u, v e V)
and the following equality"

(2.8) lira sup at(u, v)--a(u, v) -d(u, v) =0.
Ilullv, livllv<

Then the m-sectorial operator A(t)’V-V associated with the
sesqui-linear form at[ satisfies the conditions (A0)-(A3) with a=p
--1. Furthermore, the constants Ol, M,K and N in these conditions
depend only on the constants C and 6 in (2.4)-(2.7).

By virtue of Theorems 1 and 2, we obtain
(2.9) u,,(t) U(t, O)P,
where {U(t, s)} is the family of evolution operators generated by A(t).
Indeed we can construct the orm d,(, ) satisfying the relations (2.6)-
(2.8) by differentiating a,, b and c in t in the right hand side of
(1.7).

On the other hand, we see
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(2.10) u(nr)=(l+rA(nr))-l(l+rA((n--1)r)-1.. .(1 +rA(r))-lP.
With the aid of Theorem 2, tollowing Theorem 3 yields our main

results, (1.14) and (1.15), when applied or A=A and U=U.
Theorem 3. Under the conditions (A0)-(A3) with a=p--1, the

estimate
(2.11) U(nr, 0)-(l+rA(nr))-’(l+rA((n-1)r))-’...(1

< CI/n
holds for each 7 in 07< 1. Here the constant C depends only on the
constants O,,M,K and N in (A0), (A2) and (A3), on T and on the
parameter 7.

In below we give an outline of the proof of Theorem 3. We omit
here the proof of Theorem 2 which may not be so trivial but is rather
straight-forward.

3. Outline of the proof of Theorem 3. Put
(3.1) u(t)= U(t, 0)
(3.2) us(t) -(1 + rA(nr))-l(1 + rA((n-- 1)r))-... (1 + rA(r))-’ (t--nr)
and
(3.3) e(t) ----u(t)--u(t) (t--nr).
We can derive the following equality (3.4) whose proof is omitted:

(3.4) e(tn)-- , (l/rA(tn))-’(l+rA(t_,))-’... (1 + rA(t)) -1

k=l tl-i

[A(t)U(t, O)--A(r)U(r, 0)]edr,
where t-----kr. We now examine the operator

A(t)U(t, O)-A(r)U(r, O)
and the operator

(1 + rA(t))-’(1 + rA(tn_,))-’... (1 + rA(t))-’.
For these operators we claim following Propositions 1 and 2, respect-
ively.

Propositon 1. Under the conditions (A0)-(A3) in Theorem 1, we
have
(3.5)

with

A(t + z]t)U(t + z]t, s)--A(t)U(t, s)
1 S 2e-t-[(2--A(t + t))---(2--A(t))-’]d2

2-- r

+ A(t + At)[e-(t+at-s)A(t+at>--e -(t-s)A(t+zt)] -- V(t, 8;

T> t + zlt > t s> O)

(3.6) IlP(t,s;3t)ll<Cflt{(t-s)"-r-+(t-s)--} (O<’<a, p)
for each . Here F is the positively oriented boundary, running from
+ ce, to + ce-, of the sector X:

2={ e C; larg
The constant C in (3.6) depends only on the constants 0, M, K, , N, p, T
and y.

Proposition 2. Under the conditions (A0)-(A3) in Theorem 1
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with p=l, we have the estimate

(3.7) I1(1 + rA(t))-’(1 +rA(t-))-’" .(1 +:A(t/l))-A(t/)-l
< Cr-(n k)-for each fl in Ofll. TheconstantCdependsonly onO1, M,K,a,N, T

and ft.
To prove Proposition 1, we just need a refined version of the

method by Kato-Tanabe [4] for the construction of evolution operators
U(t,s). Proposition 2 can be proved by adopting Levy-Tanabe’s
method. Namely, in dealing with our discrete case, we imitate the
method by Kato-Tanabe [4] which was originally employed in order
to prove the inequality

A(t)U(t, s)II < C(t-- s)-.(3.8)
Now, putting
(3.9)
we have

(3.10)

with

(3.11)

(3.12)

and

e(t)=E(t),

--E(t) F(k) + F(k) + F(k)
k=l k=l

(3.13) F(k)-- dr(1 + rA(t))-1.. .(l+rA(t))-lV(r, 0 t-r),
tk--1

because of (3.4) and (3.5).
F(k) is estimated as follows by Proposition 1:

(3.14)
which yields

(3.15) , F(k)II Cn-r.
k=l

We can estimate F.(k) as
(3.16)
by taking the parameter fl>0 in Proposition 2 so small that fl+,<l
for the given -. Hence we have

(3.17) [[F(k) 1[< Crn-r.
k=l

F(k) is estimated as follows if k >/2:

(3.18) IIF(k)II<C r-(t-l)drCrk-.
We can derive also (3.18) for k=l by a standard technique of tele-
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scoping. Hence we end up with

(3.19) , Fl(k)II < Crn-r.
Proofs of Propositions 1 and 2 will be given in a forthcoming

paper along with detailed proofs, and generalization of Theorems, 2
and 3 which can cover also the case of the Neumann boundary con-
dition.

A note added. Recently the author succeeded in proving the
inequality (1.14) for ,=0, which generalizes a result of Fujita-Mizutani
[1] in the case of t-independence of at( ). The proof is based on a
refined study of fractional powers of operators and evolution operators.
Details will be given in the paper mentioned above.
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