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1. Introduction. J. Mikusifiski [1] introduced a clear and
simple operational calculus to obtain explicitly the solution of Cauchy’s
problem for linear ordinary 4ifferential equations with constant coef-
ficients. His calculus is based upon Titchmarsh’s theorem concern-

ing the convolution Ii f(t--s)g(s)ds of two continuous functions f and

g defined on [0, c). The present author should like to start with the
fact that for the convolution ring of sequences the corresponding
Titchmarsh-type theorem holds almost trivially. Hence we can easily
introduce an operational calculus based upon this fact, and apply it to
treat the Cauchy problem for linear difference-quotient equations with
constant coefficients. By taking the limit of this treatment, we can
prove the legitimacy of Mikusifiski’s operational method for differ-
ential equations without appealing to Titchmarsh’s theorem.

2. An operational calculus. We define by q the totality of
complex number valued functions (sequences) f defined on the set Nw
={--];]--0, 1,2,...} where is a non zero real number. In this
paper, we write such functions by {f(,)} or simply f whereas f(,) will
mean the value at , of the function f.

The convolution ring of sequences. For f and g e q, we define
the sum f/ g by {f()/ g()} as usual. Clearly the set becomes an
additive group with respect to this addition. The zero element is the
unction which is identically equal to zero and that is written by O.
Next, we define the product (sequential convolution product) f.g of
two unctions f and g by the value at =]"

1 ) f. g(,) o . f((]-- i)o)g(io).
i=O

Proposition 1. The set is a commutative ring with respect to
the addition f / g and the multiplication f .g.
Moreover, the ring . has the following important property.

Proposition 2. The ring has no zero divisor, that is, f .g-O
implies that f- 0 or g- O.

Proof. Let f:/:0. Then there exists the point ,0 such that f(,0)
:/:0 and f(,)-0 for all ,,0. Therefore, by f.g(,o)=f(,o)g(O), we get
g(0)--0. Now, suppose that g(,)-0 for all ,_<_/. Then, by f’g(,o/p
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+)--f(,0)g(/+w), we must have g(/+w)=0. Thus we have proved
that g=0.

The operator field. By the above proposition, we can construct
the field of (sequential convolution) quotients in the following way.
Introducing the quotient f/g o two unctions f and g e q with g :h 0
and defining f/g--h/k by f. k=g. h, we obtain as usual the field of
quotients. Of course, the unit element in is gig (g C0) and will be
written simply as 1. We call the quotient fig an operator so that our
field shall be called the operator field as well. Every function f e
can be considered as an operator since it can be identified with f. gig
(g:h 0).

The summation operator. We shall denote by h the operator
defined by the function which is identically equal to 1, and call it the
summation operator, since we get

( 2 ) h. f(,) =w , f(io)
i=O

where f e 3 and ,=]. We often write f(g)zg for the .right-hand
side. B$ this notation, we can rewrite (1) in the ollowing way" f. g(,). f(--/)g(/)/.

Scalar operators. For any complex number a, the operator [a]
defined by
(3) []={}/
is called a scalar operator, because as in Mikusifiski [1] we have the
following

Proposition 3. For any , e C and f, g e with g =h O, the fol-
lowing formulas hold good"
( 4 ) [] + [#] [+ #], [][] []
( 5 ) [a].f--f (----{af()}), [a].(f/g)--(f)/g (--(af()/g()}).

By (3) and (4), we can identify the operator [a] with the complex
number a and by (5) we see that the effect of the operator [a] is exactly
the a-times multiplication.

The difference-quotient operator. For any f e q, we define the
difference zf of the function f by f(,)=f(,+)--f(,) and the
difference-quotient (zf)/(,) by
( 6 ) f(,)/-- (f(, + w) f(,))/w.
Furthermore, we define the operator difference-quotient s by
() s-/h.

Remark. This operator s is not a scalar operator, since 1/h
={1}/{1}.

Proposition 4o For any f e 3, he following formula holds good"
( 8 ) lf/lv-- f. s-- f(O) + (oof/lv). s

(f(O) means the scalar operator [f(O)]).
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Proof.

(z).h--(. f -(,)}.h--( zlfA,
; "

Corollary.

(9) Af --f s f(0) s-’ Af (0) s - (0)

(10)
Proposition 5. For any scalar e C, we have

1/(s-or)- {((1-oa)-’/)(/} e q.
Proof. Substitute the function ((1-a)-/)/’ into (8).

we have
(1-)-. {((1-)-’)(+}

-----(1- 0a)-’s {((1-oc)-1/)(+>}- (1
By multiplying the both sides by (1-wa), we obtain

{(( -)--o)o+}=s. {(( )-/o)o+o}-

(11)

Then

Corollary.

(s--)1 ( (, + o)(, + 2o) (, + (k-I)o)_--- . ,((i (.O0)-I/a)a(v+k() ) e 3.

3. Applications to differential equations. In this section, we
shall consider the Cauchy problem for the following ordinary differ-
ential equation written in matrix form"
(12) dy / dt Ay 4- z, y(O)
where A--(a), --(), y--(y) and z=(z) r and/9 being constants
and z continuous functions (i, ]--1, 2,..., m).

Difference-quotient equations and their operational treatment.
Consider the difference-quotient equation:
(13) Af/A,--Af+g, f(0) --fl
corresponding to differential equation (12). Here f=(f) and g=(g),
g being the restriction
(j=1,2,...,m). We shall pply our operational clculus to this
equation. By Proposition 4, we hve
(14)

(f(0):t([fl(0)], ..., [f(0)])).
Hence, by (13), we obtain the following operational equation:
(15) (sI--A).f--+g--s.(o(df/A)) (/--t([/,], ..., [/9]))
where I stands for the unit matrix. Therefore, we get
(16) f--(sI--A)-.+(sI--A)-’.g--(sI--A)-.s.(o(Af/A).

(sI--A)-’ means the inverse matrix o (sI--A).
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An approximate solution of equation (12). We put o-p In, where
p is a positive real number and n a positive integer. In order to make
clear the dependence of functions f on n, we shall write nf by attach-
ing the suffix n.

For f e , we define the continuous function f by the polygonal
curve which is given by connecting each vertex (,, f(,)) in succession
by segment ( e No, o-p/n). Also or a vector F-(f) with f e ,
the vector-valued continuous function is defined by M=(,f). We call

f the polygonal extension of f and that of F.
Let f be the solution of difference-quotient equation (13)which

corresponds to o=p/n. Then we see that the graph of the polygonal
extension of coinsides with a Cauchy polygon of differential equation
(12). Therefore, we get"

Proposition 6. The polygonal extension f of the solution f of
difference-quotient equation (13) is uniformly convergent to the solu-
tion y of differential equation (12), as n tends to the infinity. In
particular, we have

y(p) lim f(p) lim f(p).

To obtain the concrete expression of this solution, we decompose
the right-hand side of (16) into two parts f* and f**"
(17) f* (sI-A)- fl + (sI-A)- g,
(18) f** (sI--A)-. s. (w(Af/A,)).

By the way, the/]-component a of (sI-A)- is a rational function
of s and the degree of the denominator is greater than that of the
numerator. Thus, a is decomposed into partial fractions as follows"
a=r/(s--a). Therefore, we get

(19) the i-th component of f* (s-a)-.(+ g).
j=l q=l

Hence, by (11), each component of f* is contained in . On the other
hand, for each component a ,of (sI-A)-.s, we have"

a,-r, + /(s-Yijq q)kq"
Therefore, we get
(20) the i-th component of f

r,(s_a)-
n j=l

and so, we see that each component of f** also belongs to . Thus,
again to make clear the dependence of these functions on n, we write

f* and f** so that, by (16),
(21) f-f* f**.

Now, we are able to obtain explicitly the solution y of differential
equation (12). Our procedure is divided into two steps.

Step 1. We shall prove
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(22) y(p) lim f*(p).

Step 2. The right-hand side of (22) shall be given, by (17), ex-
plicitly in the following way.

We write (sI-A)- for the matrix which is obtained by changing
1/(s-a) in the components o the matrix (8I-A) -1 by the continuous
unction t-e"/(k--1)!. Then we have, at point p,

(23) lim f*-(sI--A)-. +(sI--A)-.z,

where, putting (c)=(sI--A)-, is defined as follows" For z--(z)
(]--1, ..., m),

while for fl-----() fl being a numerical constant (]--1,..., m),

(M-A)-,?- (e),()

(e" -times multiplication of e). I-Ienee by (22), the solution of
(12) is given by the right-hand side of (.g).

In this way, the legitimacy of Mikusifiski’s operational calculus
for differential equations can be derived without appealing to
Titchmarsh’s theorem. To prove the above two steps, we shall prepare
the following three lemmas.

Lemma 1. Let nv and w be elements of , and let v and w be
continuous functions on [0, p]. If lim v=v and limn=w uni-
formly on [0, p]. Then limn_. (V)=vw uniformly on [0, p], where
vw means the pointwise product of v and w, and vw that of v and w.

Proof. This lemma will be proved by
InW(t)--V(t)l

L 1)p/n(nV(l 9
--4 ,=o,p/nm,..a.,X(n- - -)--nV(19))(nW(19 2F

To prove this inequality, we put f=vw--v. Then we see that f
is a quadratic function of t (,<__t<__,+p/n) with f(,)-O and f(,+p/n)
=0, so that

max ,f(t)[-lf(+(+p/n) );.te[,+p/n] 2
Therefore

f(t)[<= max max If(t)
v=O,p/n,... ,(n-1)p/n t[v,,+p/n]

0, p/n,..., (n- 1)p/n 2
Since v, n and ,,vw are linear functions of t (,t g,+p/n), we have

f(.+(v+p/n)
=4- 2(n(,) +(,+P/n)) --(,,V(,) + nV(, + P/n))(.(,)

+ n(,+p/n)]
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=4- 12(.,,VW(,) + vw(+p/n))--Qv(,) + v(,+p/n)) .Qw()
+ w(+pln))l

4-’ (,v(, +p In) + v(,)(w(, +pIn)-w(,))I.
As. an application of Lemma 1, we give
Lemma 2. Let and be polygonal extensions of v and w

respectively, and let as nc these polygonal extensions be uniformly
convergent to continuous functions v and w on [0, p] respectively.
Then, we have

(:y v(p--s)w(s)ds).lim v w(p)=v.w(p)

We omit the proof.
Lemma 3. Put

((nu. ()-- (+pln)(+2pln). .(+(k--1)Pln) 1--
(k--l)

Then, ..(t) is uniformly convergent as n-c to (t-l/(k--1) !)e on
[0, p].

Proof. u(,)-((l+pa/n)) is the solution of the difference-
quotient equation

AnulA,--au, u(0) :,1 (A:(o:p/n),
which corresponds to the differential equation

dyldt:y y(0):l.
Therefore, by Proposition 6, we see that lim_. a(t):e" on [0, p].
Now, we have, by taking , ]p In,

u..(,)-- (1 +paln)u(,)l:l{1--(1--(paln)9+}/(1--pa/n)+l
${(1+ Ipa/nlg+l--1}/(1--1pa/n[)
<{(1 +lpa/nlg+--l}/(1--1pa/nl)+.

Thus we see lim_....l(t)=lim_. (l+pa/n).a(t)--e uniformly on
[0, p], and so the case k-1 is proved. We omit the proof of the
general case.

Proof of Step 1. We have lim_. f=y uniformly on [0, p] by
Proposition 6, and so, by Af/A,=Af+g, we obtain lim_.
=Ay+z. Hence, by (20), Lemmas 2 and 3, we have lim_. f**(p)
=0. Thus, by (21), we obtain lim_, nf*(p)-limn_. f(p)=y(p).

Proof of Step 2. Since z is continuous on [0, p] and g(,)-z(,)
(,=0, p/n, ..., (n--1)p/n,p), we have limn_. y=z uniformly on
[0, p]. Hence, by (17), (19), Lemmas 2 and 3, we obtain lim_. f*

(sI-- A)-l,fl + (sI-- A),z.
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