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1. Introduction. In a celebrated paper [7], Thom has developed
a classification theory of submanifolds of a compact differentiable
manifold M roughly as follows. Two oriented submanifolds N, and
N, of M of codimension p are said to be L-equivalent if they are ori-
ented cobordant in M xI. Let _L,(M) be the set of L-equivalence
classes of submanifolds of M of codimenision p. Then by making use
of the transversality theorem, he has established a bijection

m: L,(M)—=>[M, MSO(p)]
where the right hand side stands for the set of homotopy classes of
maps from M to MSO(p), the Thom space for the group SO(p). The
correspondence is given by the so-called Pontrjagin-Thom map ny: M
—MSO(p), which is defined for every oriented submanifold N of M of
codimension p. If we consider only those submanifolds of M with
complex normal bundles, we still have a bijection

x LEM)—>[M,MU(p)]
where _LS(M) is the set of (suitably modified) L-equivalence classes of
submanifolds of codimension 2p with complex normal bundles of M
and MU(p) is the Thom space for the group U(p). Now assume that
M is an n-dimensional compact complex manifold. Then a natural
question arises:

Question. Which element of _LS(M) or _[,,(M) can be represented
by a complex submanifold of M?

If M is a compact Kihler manifold, then there are some obvious
conditions for an element in _L¢(M) to be represented by a complex sub-
manifold N of codimension » coming from the facts that the Poincaré
dual of N is a non zero element of H??(M) and also, under the Gysin
homomorphism, the Chern classes of the normal bundle of N go to the
set of cohomology classes of type (g, ¢) in the Hodge decomposition of
the complex cohomologies of M. In this note we formulate a general
condition other than the above and show that it is actually satisfied for
a particular case when the ambiant manifold is the complex projective
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n-space P,(C). The precise statement of the condition will be given
in § 2 in terms of the extended de Rham theory due to Sullivan. In
fact the present work has been motivated by his work [6].

The details of the results will appear elsewhere.

2. Statement of result. We begin by recalling several facts
from the theory of Sullivan (see [5],[6],[3]). Thus let X be a simply
connected triangulated space and let £(X) be the differential graded
algebra of @-polynomial forms on X. A differential graded algebra
A will be called a model for X (or £(X)) if there is a map (in the sense
of differential graded algebras) ¢: . 4—&(X) such that ¢ induces an
isomorphism on cohomology. Among the models, there exists a par-
ticular model py: H(X)—E(X), called the minimal model of X, which
is essentially equivalent to the rational Postnikov tower of X. A
space X will be called formal over @ or simply formal if there is a
map of differential graded algebras +y: H(X)—-H*(X; @) inducing
the identity on cohomology. Similarly a continuous map f: X—Y be-
tween two formal spaces X and Y is said to be formal if the following
diagram is homotopy commutative

M(Y) —?> MX)

ﬂlfyl l“lrx
H*(Y; Q)—?H*(X; Q

where f is the induced map of f and 4, ¥, are the maps defining the
formalities of X and Y. The rational homotopy theory of a formal
map is determined by the induced homomorphism on cohomology.
Now the main result of [3] (see also [6] for the statement over @) is the
following

Theorem 1 (Deligne, Griffiths, Morgan, Sullivan). Simply con-
nected compact Kihler manifolds and holomorphic maps between them
are formal.

Now we go back to our problem. Let M be a simply connected
compact Kdhler manifold and let N be a complex submanifold of M
of codimension p. We have the Pontrjagin-Thom map ny: M—MU(p)
(or MSO2p)). Itis known by Theorem 1 that M is a formal space
and also it can be easily seen that Thom spaces MU(p) and MSO2p)
are formal (cf. [6]. It also follows from Proposition 2 below.). Under
these situations, the following statement could be taken for one of the
precise forms of our Question.

Question’. Is the Pontrjagin-Thom map =y:M—MU(p) (or
MSO(2p)) formal?

In the stable range pg%(n+1), every map f: M—MU(p) (or
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MSO@2p)) is formal because in this range MU(p) (or MSO(2p)) can be
considered as a product of Eilenberg-Maclane spaces over @. How-
ever beyond that range the spaces MU(p) and MSO(2p) are far from
being products of Eilenberg-Maclane spaces (except the case p=1) and
if Question’ would be answered affirmatively for a manifold M, then
it should imply that there exist topological obstructions for an element
in LE(M) to be represented by a complex submanifold. At present,
we have no general confidence about the above Question’. Here we
only claim that it holds affirmatively for the particular case when M
=P,C). Namely we have

Theorem 2. Let N be a complex submanifold of P,(C) of codi-
mension P. Then the Pontrjagin-Thom map ny: P (C)—MU([D) is
formal.

Besides the one stated before this theorem, it has another mean-
ing that the L-equivalence class of a complex submanifold of P,(C) is
determined up to finite number of possibilities or exactly over @ by the
cohomology invariants. This point has the following

Corollary 3. Let N be a nonsingular subvariety of P,(C). Then
the set of those L-equivalence classes which can be represented by con-
Jugate varieties of N is finite.

3. Preliminaries. Let f: X—Y be a continuous map. Then we

have the cofibration X—f—aY—p>C ; where C, is the cofibre (or the
mapping cone) of f and p is the natural inclusion. Now we give a
similar construction in the category of differential graded algebras and
their maps. Thus let ¢: $— A be a map of differential graded alge-
bras. Then we define a differential graded algebra C,, called the
cofibre of ¢, by setting C,=@,C? C*={3] a;t?, >, @,;t?, p); a, € A,
a;e A4 Be B and ¢(f)=>, @,;}. We can define canonical differential
and multiplication in C, so that it becomes a differential graded algebra.

The natural sequence C;—[—).@—?—)Jl defines a long exact sequence of
cohomology groups. Now let f: X—Y be a continuous map and sup-
pose that there are given models J—¢€(X), $—E(Y) and a map ¢: B
—JA making the following diagram commutative

3,

eh-se.
Then we have
Proposition 1. C; is a model for C;. Namely there is a map C,
—E&(C)) inducing an isomorphism on cohomology.
Let Y be a formal space and let f: X—Y be a continuous map.
Let K=Ker (f*: H¥(Y ; @)—H*(X; Q) and I=H*(Y ; @)/K. Since K
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is anideal of H*(Y ; @), I has a structure of analgebra. We write FI((K)
and F'(I) for the formal spaces (=formal rational homotopy types)
corresponding to the algebras K and I respectlvely Let Y, be the

rational homotopy type of Y and let F(I)———)Y(o,, Y(o,——>F(K) be the
formal maps corresponding to the projection H*(Y ; @ —I and the
inclusion KCH*(Y ; @). Then the sequence F(I)—Y ,—F(K) is a co-
fibration. Now we make the following

Definition. Let Y be a formal space. A continuous map f:X

—Y is called pseudo formal if the map X ——f—>Y—> Y, lifts to F(I).

It can be shown that formal map is pseudo formal. The following
is the main technical result.

Proposition 2. Let Y be a formal space and let f: X—Y be a
pseudo formal map. Then the cofibre C; has the rational homotopy
type of F(K)\/S(Cok f*), where K=Ker (f*: H*(Y ; QQ—H*(X ; Q))
and S(Cok f*)=\V SV ... V8™, d(q)=dim Cok (f*: H(Y ; Q) —H*

d(g)-times
(X; Q). Moreover the natural map p: Y—C; is rationally homotopic
to the projection onto the factor F(K) by the map k. In particulor
the space C; and the map p are formal.

This is proved by using Proposition 1. From Proposition 2, we
can deduce

Proposition 3. Let N be a differentiable submanifold of P,(C) of
codimension 2p and let = : P,(C)—T() be the collapsing map onto T'(v),
the Thom space of the normal bundle of N. Assume that N is not
homologous to zero in P,(C). Then T() has the rational homotopy
type of P,(C)/P,_(C)VS(Cok j*), where j: U—P,(C) is the inclusion,
U=P,(C)—N. Moreover the map = is rationally homotopic to the
projection onto the factor P,(C)/P,_,(C), hence it is formal.

We need also the following

Proposition 4. Let X be a formal space and let & be a p-dimen-
sional complex vector bundle (or 2p-dimensional oriented real vector
bundle) over X. Then the Thom space T(&) and the natural map T(&)
—MU(p) (or MSO(2p)) are formal.

4. Sketch of proof. The proof of Theorem 2 goes roughly as
follows. First it is easy to show that every map f: P,(C)—MU(p) is

formal if p> %(n—z). So let N be a complex submanifold of P,(C) of

codimension p < —;-(n—Z) (thus dim N> ~23—(n+ 1)). Then by a result

of Barth and Larsen [2], N is simply connected and hence it is a formal
space by Theorem 1. Now the Pontrjagin-Thom map =z, factors

through T(); 7y : P,(C)——>T()—MU(®). But by Propositions 3 and
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4 the maps = and T(W)—MU(p) are formal. Hence n is formal.
Remark. (i) There is a proof of Theorem 2 based on a result
of Barth [1] concerning the cohomology of complex submanifolds of
P,(C). However the proof sketched above is more intrinsie.
(ii) Perhaps we should mention a conjecture of Hartshorne
which says that the types of complex submanifolds of P,(C) of small

codimensions would be very limited. (See [4], the precise statement

is this: if N is a complex submanifold of P,(C) of dimension >—§—n,

then N is a complete intersection.)
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