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26. The Hodge Conjecture and the Tate Conjecture
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Throughout the paper, X% (p) will denote the Fermat variety of

dimension n and of degree m in characteristic p (p=0 or a prime
number not dividing m), defined by the equation
(1) xp+ar+ -+ ap,=0.
The purpose of this note is to report our results on the Hodge Con-
jecture for X7 (0) and the Tate Conjecture for X7 (p), p>0. By means
of the inductive structure of X7 (p) with respect to » ([3, § 11), we can
reduce the proof of these conjectures to the verification of certain
purely arithmetic conditions on m,n and p. After formulating the
condition in § 1, we state the main results in §§2 and 3. We give the
brief sketch of the proof in § 4.

Detailed accounts will be published elsewhere.

§ 1. The arithmetic condition. Fix m>1, and let H be a cyclic
subgroup of order f of (Z/m)*. We consider the following system of

linear Diophantine equations in 2,, - - -, #,,_, and ¥
m=1

(2) 2, 2 {twyx,=fmy  for all te(Z/m)%,
v=1 uE€EH

where, for a € Z/m—{0}, {a) denotes the representative of a between
land m—1. Let M,(H) denote the additive semigroup of non-negative
integer solutions (2, -, Tm_1; ¥) of (2) satisfying moreover the fol-
lowing congruence:

m—1

(3) ve,=0 (mod m).

v=1

For an element é=(x,, -+, Xp_1; ¥) of M,(H), we call y the length of
& and write y=||&|. (We exclude the trivial solution (0, ---,0;0).)
If H’ is a cyclic subgroup of H, then M,(H’) is contained in M, (H);
in particular, setting M, =M, ({1}, we have M, CM,(H) for any H.
There are exactly [m /2] elements of length 1 in M, (H) and they are
all contained in M.

Definition. Let &é=(xy, -+, Zp_1;¥) € M,(H). Then

(i) ¢ isdecomposableif é=¢'4¢&" for some &, & € M, (H) ; other-
wise ¢ is called indecomposable.

(ii) ¢ is quasi-decomposabdle if there exists y»e M, (H) with |7||
<2 such that &4+»=¢"+¢&" for some &, &” € M ,(H) with ||&|, ||&”[|<||&]|.

(iii) & is semi-decomposable if there exist non-negative integer
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solutions () and («)) of (8) such that z,=x+) and > z,=> z/'=3
(this occurs only if y=|&||=3).

By Gordan’s lemma, there are only finitely many indecomposable
elements in M, (H), and they form the minimal set of generators of
M, (H). Now let us formulate the following conditions (P~(H)) for n
even:

(Pr(H)) Every indecomposable element & of M, (H) with 3<||&||
<mn/2+1 is either quasi-decomposable or semi-decomposable.

This condition is vacuous if n<2 or if M,,(H) has no indecomposable
elements with length >3. For sufficiently large n, (P%(H)) is equiv-
alent to the following :

(P,(H)) M,(H) has no indecomposable elements of length >3
which are neither quasi-decomposable nor semi-decomposable.

§2. The Hodge Conjecture for X%(0). Given a smooth projective
variety X over the field of complex numbers C, the Hodge Conjecture
for X states that the space of rational cohomology classes of type
(d, d) on X is spanned over @ by the classes of algebraic cycles of co-
dimension d on X (cf. [1]). For the Fermat variety X, =X"(0) over
C, this is non-trivial only in case » is even and d=n/2. We call the
condition (P*(H)) or (P, (H)) for H={1} simply (P7) or (P,).

Theorem 1. If the condition (Pv) is satisfied, then the Hodge
Conjecture for the Fermat variety X7, is true.

The condition (P2) has been verified for the following values of m
and » (at least): 1) m prime, all n (Parry), 2) m<20, all » and
3) m=21and n<10. Therefore the Hodge Conjecture for X7, is true
for these m and n. Thus we have extended the recent results of Ran
[2] for m prime to some extent. Hopefully the condition (P7) might
be always true.

Theorem 2. Fix m>1. If the condition (P,) is satisfied, then
the Hodge Conjecture for arbitrary product X=X - .- X X7 is true.

§3. The Tate Conjecture for X*(p). Given a smooth projective
variety X over a finite field k=F, such that X=X idé is irreducible

(k=the algebraic closure of k), the Tate Conjecture for X over k states
that the order of pole of the zeta function Z(X/k,T) at T=1/¢° is
equal to the dimension of the subspace of H?4(X, Q,) spanned by classes
of k-rational algebraic cycles of codimension d on X ([5, §3]). For
the Fermat variety X7 (p), this is non-trivial only in case » is even and
d=mn/2.

We choose the base field k=F, for X7,(p) as follows. Let f be the
order of p mod m in (Z/m)* and let ¢g=p’™, where m’=L.C.M. (m, 2).
We denote by H, the cyclic subgroup of (Z/m)* generated by p mod m,
and call the condition (P;(H,)) or (P,(H,)) simply (P%(p)) or P, (p)).
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Theorem 3. With the above notation, the Tate Conjecture for
Xn(p) over F,is true, provided that the condition (Py(p)) is satisfied.

The condition (P~ (p)) has been verified in the following cases:

i) p=1 (mod m), m, n satisfying (P7) (cf. §2).

ii) p’=—1 (mod m) for some v, m, n arbitrary (“supersingular”
case).
Tate himself proved the Conjecture in case i) with =2 and in case
ii), and remarked that the case i) with arbitrary » (even) follows from
the Hodge Conjecture for X7, ([5, p. 102]). We have also proved the
Tate Conjecture for X2 (p) in case ii) and in the surface case:

iii) m=2, p, m arbitrary ([3, § 2]).

Furthermore, we have verified the condition (P7(p)) in a few more
cases:

iv) m<8, p, n arbitrary.

Note that some cases in iv) are not covered by i), ii) or iii), i.e. n>2
and m=17, p=2,4 (7) or m=8, p=3,5 (8).

Theorem 4. Fix m and p. If the condition (P,(p)) is satisfied,
then the Tate Conjecture for arbitrary product Xmx - - - X X™ is true.

Remark. The global Tate Conjecture for X7 over -certain
algebraic number fields follows from the Hodge Conjecture for X%
(cf. [5, §4D).

§4. The outline of the proof. We shall briefly outline the basic
idea of the proof. For simplicity, we write X"=X"(p), fixing m and
p. Let n=7r-+s with r,s>1. Using the inductive structure of X" ([3,
Theorem 1.7]), we have a natural isomorphism
(%) [HpymXDQH (X )OI H (X" QH 5 (X ) (D] 5 Hpyn (X,
which is equivariant with respect to the natural action of G* on each
term and which preserves algebraic cycles. Here G" is the quotient
group of the (n+42)-fold product of y, by the subgroup of diagonal
elements, and H7,,(X"™) is the “primitive part” of H*(X") if n is even
(n>0), and equal to H*(X") if n is odd. The cohomology H"(X™ is the
complex cohomology if p=0, and the l-adic etale cohomology if »p>0,
where ! is a prime number such that I#£p and [=1 (mod m). We have
the eigenspace decomposition of HZ,.(X™):

H XM= P V(w), dim V(a)=1,

acUP,

where 22 is the subset of characters of G" defined by
Ar ={a=(ay, -+, O )| € Z/m, a,%0, > a,=0}.

If p>0, the decomposition is compatible with the action of
Frobenius endomorphism F of X" relative to F,; the eigenvalue of F*
on V(x) is given by the Jacobi sum j(a) of Weil [7] up to the sign (—1).
The condition for j(«) to contribute to the pole of Z(X"/F,, T) can be
explicitly described by Stickelberger’s theorem ([8], cf. [8]). If p=0,
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the condition for V(a) to come from rational cohomology classes of
type (n/2, n/2) can also be described by « ([21, [4]).

Now, by the map (*), we can construct algebraic cycles on X~
from those on X" X X* or X" 'xX*!. The conditions (P2) or (P~(p))
say exactly when every candidate of algebraic cycles on X7 (0) or X2(p)
can be constructed inductively from algebraic cycles on X° X* or
X'x X', where the Hodge Conjecture or the Tate Conjecture is known,
the former by Lefschetz theorem and the latter by Tate [6] and
Shioda-Katsura [3]. This proves Theorems 1 and 3.

The proof of Theorems 2 and 4 also depends on the existence of
the isomorphism (*) preserving algebraic cycles.
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