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41. A Remark on the Hadamard Variational Formula

By Daisuke FUJIWARA
Department of Mathematics, University of Tokyo

(Communicated by Koésaku Yo0SIpA, M. J. A., May 12, 1979)

§1. Introduction. Let f(x) be a real valued C~ function of x in
R:. Using this and real number t<c R, we define the open set 0,
={z € R?| f(x)<t}. Its boundary is y,={xe€ R*|f(x)=t}. We assume
the following assumptions for f(x);

(A.1) 0, 1is a non empty simply connected bounded domain in R®.

(A.2) Allthetel[—1,0)U (0, 1] are regular values of f.

(A.3) £, contains only one critical point &° of f. At this point,
the function f(x%) has its value 0 and it has non-degenerate Hessian of
signature of type (1, 1).

We shall consider the Green function g,(x,y) for the Dirichlet
problem in the open set 2, for any ¢ e[—1, 1], that is, g,(z, y) is the
solution for the following boundary value problem;

(1) —Adg(x, Y)=06(x—1y) for any x,y in Q2,.
and
(2) 9.z, ¥)=0, ifxey, yel,.

When ¢ decreases from 1 to any ¢>0, the open set 2, shrinks to £e.
Throughout this process 2, is a simply connected domain with its
smooth boundary, because (A.2) and (A. 8) hold. See, for example
Milnor [6]. Therefore, the celebrated Hadamard variational formula
implies that (d/dt)g,(z, y) exists for ¢+0 and for any « and ¥ in 2, and

that

d a9.(x,2) 39.(y, 2) 1
3 —9.\X, Y)= : da 2

(3) dt 94 9) e Oy, Ov, |grad f(2)] 7

where dg, is the line element of 7, and v, is the unit outer normal to 7,

at 2. (See Hadamard [5], Garabedian [4], Garabedian-Schiffer [3].

Simpler proof is given in Fujiwara-Ozawa [2].) This enables us to write

(4) 9., y)—g.(x, y)=f1 7%9,(%, ydt

for any x=£y in 2, if e>>0. Hence the following natural question arises.
(Q) Can one replace ¢ in (4) by —1?

This does not seem a trivial problem because the open set £, has two

connected components for ¢<0 while it is connected for £>>0. The aim

of this note is to prove the following affirmative answer to this question

Q.

Theorem 1. For any x+vy in 2_,, we have
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(5) [ Eatw, v dt<e
and
(4
(6) 0.0 D=9 @=L o pat.

§2. Green functions. We begin with the following four well
known facts. (See, for example, Courant-Hilbert [1].)
Proposition 1. g¢,(x, ¥y)>0 for any x and y in 2, and for any t in
[—1,1].
Proposition 2. ¢,(x, ¥Y)<g. (x,y) if t<t' and x,y € £2,.
Proposition 3. g¢,(x,y) is a continuous function of x in 2,\{y}.
Proposition 4. In the case t<0, we have
(7) 9.z, y)=0
if x and y belong to different components of 2,.
Lemma 5. At every x and y in Q, with x+vy, the limit

(8) 95 (z, y)=lj}§1 9_.(x,y)

exists.

Proof. We fix two arbitrary points # and y in £,. Then, there
exists some §>0 such that x and y are contained in 2_,. The sequence
of numbers {g_,(x, )} forms an increasing sequence when ¢ decreases
to 0. On the other hand, Proposition 2 gives
(9) g-.(x, <92, y).

This proves Lemma, 5.

Lemma 6. ¢g; (@, ¥)=g,(x,y) for any x, y € 2, satisfying x+y.

Proof. We want to prove that
(10) h(x)= 942, ¥)— 95 (®, ¥)
vanishes identically in 2,. This function (x) is the limit of
aan h.(x)=g., ¥)—9g_.(, ¥).

We have, by Propositions 1 and 2, that

(12) 0<h@<golw,y)  if wel_\{y}.

Since & (z) is harmonic in £_, for any 6>¢>0, h(x) is harmonic in 2 _;
by virtue of Harnack’s theorem. This implies that i(x) is harmonic
in 2,. Therefore, Lemma 6 will be proved if we prove

13) lim h(x)=0.
z—To
(12) implies that
(14) 0<lim inf A(x)<lim sup h(x)<lim sup g,(z, ¥)=0.
x=7p z-To x—To

Hence (13) is proved.

Lemma 7. If x and y are different points in 2,,
(15) 95 (@, y)———ligl 9.z, y)
exists.

Proof. For any x+y e 2,, we have
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(16) 9., ¥) > 9.z, ¥) >0.
On the other hand {g,(z, )} forms a non-decreasing sequence when ¢
tends to 0 decreasingly. This proves Lemma 7.
Lemma 8. For any different points x and y in Q,, we have
aamn 95 @, ¥) = go(x, ¥).
Proof. We want to prove
(18) h(x)=97 @, y)— 9.z, ¥)
vanishes identically in £,. This function is the limit of
19) h.(@)=9.2, ¥)— 9.z, y)
when ¢ goes to 0 decreasingly. The function %,(x) is harmonic in £,
and it satisfies the inequality
(20) 0<h.(@)=9.(®, Y <9z, ¥) on .
It follows from this and Harnack’s theorem that h(x) is harmonic in
£, and satisfies

@1 0< ().
Lemma 8 will be proved if we prove
22) lim h(x)=0,

2T\ (0)
because Z(x) is harmonic in £, and the one point set {z°} is of harmonic
measure 0 in 7,.
(22) follows from (21) and
23) lim sup A (x)<0.

z-To\{x0}

Now we prove (23). Assume that « tends to ’ in 7,\{z’}. Then, there
exists a domain 2’ with the following properties;

(i) 2049,

(ii) The boundary 02’ of 2’ is smooth.

(iii) In some neighbourhood U of &, 3£’ coincides with ,NU.
An example of such 2’ is indicated in Fig. 1, where dotted line shows
092,.

Fig. 1

Let ¢’(x, ) be the Green function for the Dirichlet problem in 2.
We claim that

(24) 97 @, <9, Y.
If this is the case, we can prove
25) lim sup A (x)<O0.

-2’

In fact, letting x—x’ in (24), we have
(26) lim sup h(x)=lim sup gq (x, y)<lim sup g’'(x, y)=0,

z—x’ z— -z’
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because of property (iii) of £’.
In order to prove (24), we introduce the domain
Q;={x e R*|dist (z, 2)<t},
where dist (x, 2’) denotes the distance from « to 2’. Let g¢/(x, y) denote
the Green function for the Dirichlet problem in the domain £,. Since
£’ is smooth, the Hadamard variational formula implies that
27 ltifﬁl 9.z, Y)=9'(x, y)

for any x#y in £’.
For any ¢>0, there exists ¢,>>0 such that 2,CQ, for any positive
e satisfying e<e,. This implies that

(28) 9., W<gix,y)  for any e<e,.
Letting ¢ | 0, we have
29 95 (@, <9, y)

if x#vy in Q,. Letting ¢ tend to 0, we have (24) because of (27). Lemma
8 has been proved.
We have proved

Theorem 2. For any x+y in 2,, we have
(30) 9., y)=ligl 9.(@, ¥)

(G2)) 9.(x, y)=litr§1 9.(%, ¥).

§ 3. Proof of Theorem 1. Hadamard variational formula (3)
gives

1
(32) 9:(x, y)—g.(x, y)=f %gt(x, ydt  for vz, y in Q,
and
33 g, Y—g_(z, y)=f

-1 dt
if >0 and 6>>0. Therefore, Theorem 2 implies that
(34) lim ' igt(ac, y)dt and lim j—s j—gt(x, y)dt

dt s10 J-1 dt

el 0 B

9.(x, y)dt for va,ye Q_,,

exist. Moreover, we have
1 -3
35 gz, ¥)—g_(, y)=limf i9;(90, y)dt+limf igc(oc, y)dt.
10 Je dt s10 J-1 dt

The Hadamard variational formula (3) implies that (d/dt)g,(x, )
is continuous even at x=y if t+0. Thus, we put
d d
dt dt
Then, we have from (3) that

d
36 2 9.y, >0
(36) 7 9., =

9.y, Y=Ilim —-g,(x, ¥).
=Y

and the Hadamard’s inequality (Hadamard [5])
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37 —j;gt(x, ) [g (-g;gxx, x))”z(%gxy, »)".

Since &,(x)=g,(x, ¥)—9g.(x,y) is harmonic even at x=y, we can
take the limit of both sides of (82) when x tends to y. And we have

1
(38) hs(y)=f C?t 9.(y, Y)dt, for any y € 2,.
The harmonic function % (x) satisfies
(39) 0<h (@) <g.(x, )

for any x in £, and it converges to the harmonic function ¢g,(x, y)—
go(x,y) if xxy. Therefore h,(x) converges also at x=y by virtue of
mean value theorem and Harnack’s theorem. Hence we have

(40) lim k() =lim | -% gy, vdt.
510 10 Je dt

This and (36) imply that (d/dt)g.(y, y) is Lebesgue integrable over [0, 1],
that is,

41) .r -%g,(y, Ydt<< oo for any y in Q,.
0
Similarly, we can prove
0
42) —;—tgt(y, ydt < oo for any y in Q,.
-1
Thus, we have proved
43) Il ;lit 9.y, dt< oo for any y in Q,.
-1
This and Hardamard’s inequality (37) prove
1
(44) [ Lo w|dt<e.
-1] dt

It follows from this and (35) that

9:(x, ¥)—9_,(x, y)=f_1 d

Sz, ydt
dtg(w Y)

as a Lebesgue integral. Theorem 1 has been proved.
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