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1. Introduction. M. Numata [1] proved that the nilpotent length
of a finite solvable group is at most one plus. the number of conjugate
classes of the non-normal maximal subgroups.

In this paper we shall prove the following two theorems. One of
them partially extends Numata’s result.

Theorem 1. Suppose every non-normal maximal subgroup of a

finite group G has the same order. Then G is solvable and the nilpotent
length of G is at mos two.

Theorem 2. The number of conjugate classes of maximal sub-
groups of a finite non-abelian simple group is at least three.

Alternating group A has. just three conjugate classes of maximal
subgroups of it. So the number three in Theorem 2 is best possible.
An example related to Theorem 2 is found in the paper [2] due to
Goldschmidt, which gives a group-theoretic proof of Burnside’s
theorem concerning the solvability of groups of order pqb for odd
primes p, q. In the paper it is shown that if G is a minimal counter
example, then G is. simple and the number of conjugate classes of
maximal subgroups of G is two. Hence the proof may also be com-
pleted by Theorem 2.

2. Proof of the theorems. Let G be a permutation group on/2,
denoted by G, and H be a subgroup of G. We denote by I(H) a set
of the points oi 2 left fixed by H. We need the following well-known
lemma, which is proved by using Witt’s lemma [3, P 20], and Lemma
6 oi [4].

Lemma. Let G be a transitive permutation group on D and p be
a prime. Suppose P is a p-subgroup of G of maximal order which

fixes at least two points. Then No(P) is transitive on I(P).
Proof of Theorem 1. We may suppose that there exists a non-

normal maximal subgroup H in G. Let p be a prime dividing [G" H
and let P be a Sylow p-subgroup of G. I GNo(P), then there exists
a maximal subgroup L such the L=No(P). Since L>_No(P), we obtain
L--No(L) and so L is a non-normal maximal subgroup of G. Hence
ILl=]HI, contrary to our choice of p. Consequently G>P. Let L=L/P
be any maximal subgroup oi G=G/P. Since p does not divide [G" L l,
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L is a normal subgroup of G and G>L. Hence G is nilpotent and the
theorem is proved.

Proof of Theorem 2. Assume the theorem is alse or a simple
group G. By Theorem 1, G possesses two conjugate classes o maximal
subgroups. We denote them by l"= {Lx x e G} and 9={Mx x e G}
={M=M,M, ...,M}. Let ]FI=IG" Ll=l, then it is immediate that
and m are relatively prime. We assume that lm.

Since G" is. not a Frobenius group, we may assume that M M.,
which is the stabilizer o M and M., is not trivial. Let p be any prime
dividing M1 ( M21 and let P be a p-subgroup of G" o maximal order
fixing at least two points. We may assume that P=<M1. By lemma N6(P)
is transitive on I(P) and so N6(P) fixes no points o /2. Thus Na(P)
is not contained in M or every x e G, and then Na(P)<_L 2or some
xeG. Then it ollows that LMP and so ILMI=ILMI is
divided by IPI. On the other hand the order of a Sylow p-subgroup of

MIM2 is. not greater than IPI. Thus [LMII is divided
Since and m are relatively prime, G=LM and IMp" L M]=/. Now
IMI-11L" MI--IM" MIMIIMM and IMM divides IL"
Therefore divides IMp" M M21. Since lm, we have MI" M
m. This implies that the length o the orbit of M containing M is
at least m/ 1, contrary to m I/2 I.
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