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70. On an Explicit Construction of Siegel
Modular Forms of Genus 2

By Hiroyuki YosHIDA
(Communicated by Kunihiko KODAIRA, M. J. A., Oct. 12, 1979)

1. Inthis note, we shall present an explicit correspondence from
a pair of elliptic modular forms to a Siegel modular form of genus 2,
which “preserves” Euler products, by means of theta series.

We denote by H the Hamilton quaternion algebra. For aring A,
let A% denote the group of invertible elements of A. For a square
matrix M, (M) denotes the trace of M. For modular forms and
Euler products associated with them, we shall use notation as is given
in A. N. Andrianov [1] and G. Shimura [4].

2. Let D be a definite quaternion algebra over @ whose discrimi-
nant is d* and R be a maximal order of D. Let DX denote the adeliza-
tion of D*. For a prime I, we put D,=D ®, Q, and R,=R ®, Z, and
let ¢, denote the canonical injection of D} into DX. Set K= ]:[ Ry x H*

and let D}:f) D*y,K be a double coset decomposition of D% such that
i=1
the reduced norm of 5, (1<i<H) is 1€ Q%. For 1<1i,j<H, define a
lattice L,; of D by L,,=DNy; (]'[ Rl)y;1 and put R,=L,, e¢,=|R%|. Let
l

N, Tr and * stand for the reduced norm, the reduced trace and the
main involution of D respectively. Let H, be the Siegel upper half
space of genus n. Set

(1) 9 ()= 3, exp 2z/—IN@)),  zeH,

@ o= n e (g0 TN )
ze H,.

Then 9, and 9, are Siegel modular forms of genera 1 and 2 respectively.
The weight of them is 2 and the level of them is d. Let S(R) denote
the space of complex valued functions ¢ on DX which satisfy that
o(r9k)=¢(g) for any ye D*, ke K, ge DX. For a prime l}d, fixing a
splitting D,=sM,(Q,) such that R, is mapped onto M,(Z,), we put
-1
O =Ze{o-a(o 3))+elo4(p 7))
For ¢, ¢,, ¢, € S(R) and 1<i<H, set

(3) Fl)= ji (o)),
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(4) F (901, §02) =§1: JZ:: (%(?/z)%(yj) / eiej);§1r

Theorem 1. Let ¢oeS(R) and Il be a prime such that lyd. If
T'(Dep=1p, we have TQ) f(p)=A1f(p) for any 1, 1<i<H.

Theorem 2. Let ¢, 0, € S(R) and | be an odd prime such that Lid.
If T"De,=2,0,, 1<i<2, then we have

T(l)F (901» 902) = (21+22)F (Sﬁu 502),
TAF (g, 9 = B+ Ada+ B— 21— DF (g, ).

A detailed proof of Theorem 2 is given in [5].

Remark 1. Suppose that ¢, ¢, and ¢, are common eigenfunctions
of T"() for every lfd. Then f,(p) is a cusp form if ¢ is not a constant
function. If d is a prime, F(g,, ¢,) is a cusp form if ¢, is not a con-
stant multiple of ¢,.

3. Hereafter, we shall assume that d is equal to a prime p and
discuss in what condition F' does not vanish. Every identity between
Euler products shall mean the equality up to the 2 and p-factors. Let
@ be a prime element of R, and put S*(R)={p € S(R)|¢(g¢,(@))=¢(9),
Yge D5}, S T (R)={pe S(R)|p(gc,(@)=—¢(g), Vg€ D5}. We can show
easily that if ¢e S*(R), then f,(¢p)e Gi(I'y(p)). Let ¢, ---, ¢, (resp.
Or.1 c o> ¢g) be a basis of S*(R) (resp. S-(R)) consisting of common
eigenfunctions of 7'(l), Is=p. Here T is the type number of D. Note
that the integral quadratic form x—N(x) on L,; represents 1 if and
only if i=j5. Hence we have F(¢p,;, ¢,)%0, which is an Eisenstein series
whose Euler product is L(s, ¢,)*. If ¢,€ S*(R) and ¢,€ S"(R), we can
show F(g;, ¢)=0. However if ¢, j<T or ¢, j>T, we can expect the
nonvanishing of F(p,, ¢,). At present, we can prove the followings.

Let K be an imaginary quadratic field of class number 1 such that

(ﬁ) = —1. Then the maximal order O of K is embedded in a maximal
D

order R, of D.

Theorem 3. Let the notation be as above. If ¢(y,)#0, ¢.(¥,)
#0, we have F(gp,, ¢,)#0.

Let K be an imaginary quadratic field of class number 2 such that

(£>= —1. The maximal order © of K is embedded in some R,. Let

D
J(AY, 7(A,) be the singular invariants for two representatives ., %, of
ideal classes of K. Let F be the real quadratic field generated over
Q by j(Ap.

Theorem 4. Let the notation be as above. We assume that

(i) — —1 and that p does not divide JQ)—j@). For g, o, such that

»
t,u<T or t,u>T, we have F(p,, ¢,)#0 if ¢(y,)#0 and ¢,(y)+0.
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Proof. We shall prove Theorem 4. The proof of Theorem 3 is

simpler. Since (—FL«) = —1 and p does not divide j(,) —7(,), by virtue
D

of Deuring’s results on supersingular moduli and a theorem of
Chevalley-Hasse-Noether, © is embeddable in exactly two maximal
orders R, and R, which have non-principal two sided ideals. More-
over R, and R, are conjugate. We take s,ve Z so that the roots of
X*—sX+v=0 generate O over Z. Let > a(N) exp (2rv —1a(Nz)) be
the Fourier expansion of F(p,, ¢,). If t,u<T or t,u>T, we see easily

that a((i /2 81/,2>)=s05(%)90u(y¢)~(s0me positive integer). Therefore

F(‘Pn SDu)?&O if 90;(?/1)7&0 and gDu(yz)#O-

Remark 2. For re Aut(C) and ¢ S*(R), define ¢" € S*(R) by
o (9)=(e(9)), g€ Df. Then it is clear that f,(¢)=(f(p)". Using this
fact and finding several suitable imaginary quadratic fields of class
number 1 or 2 which satisfy the conditions of Theorem 3 or 4, we
obtain the followings. For every f e G;([",(p)) (resp. f e S;(I(p)) and
€ Aut (C), where f is a common eigenfunction of Hecke operators,
there exist non-zero Siegel modular forms F', and F, (resp. F') such
that L(s, F')=L(s, f)L(s, f*), L(s, F;)={(s){(s—1)L(s, f) (resp. L(s, F)
=L(s, )L(s, 7)), if p<103. Here { denotes the Riemann zeta func-
tion. If p=31 for example, we can obtain a Siegel modular form
whose Euler product is equal to the one dimensional part of the Hasse-
Weil zeta function of certain simple 2-dimensional abelian variety
(cf. [4, Theorem 7.15]).

Remark 3. Putl,=|{t|¢,(y.)#0}|. Wecan show dim, (I,|1<j<H)
=1, for every 1<i<H. Hence I,>2 if H>2 for every ¢. A. Pizer
[3] found for many p that I,=H if R, has a non-principal two sided
ideals and that I,=T if R, does not. The importance of this conjecture
is now obvious.

4. For the higher weight case, we can also construct (by a similar
formula to (4)) a Siegel modular form F (of genus 2) of weight £ from
a pair (f,, f») of elliptic modular forms such that the Euler product
L(s, F) is equal to L(s—Fk+2, fOL(s, f), where f,€G,(I"(p)),
f,e Sxev.(I'(p)) and k is even. Inour construction, some explicit choices
of spherical functions of nice behavior are crucial. Here we content
ourselves by giving an example for the case p=3, k=4. Set

1 0 3/2 0
0 1 0 3/2
S=ls;2 0o 3 o0
0 3/2 0 3
and
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6,(x)= 3 Pz, y)exp Rrv—1a(Q(x, ¥)2)),

(@,y) €Z1DZ*

0,()= Y. Pyz,y)exp 2tV —10(Q(x,¥)2), z€H,

(x,y) EZ4DZ4

Here we put z=(®,, %y s, ), Y=1 Yo Yss ¥0)» Pi(@, )= (@Y~ Y%,
+ Y — Y — BYs+ Yo%), Po(, ¥) = (2,5 — ¥i&s+2Y— Yo%) and Qz, y)
_ (‘xSw txSy

‘@Sy  ‘ySy
that L(s, F)={(s—2),(s—3)L(s, f) holds, where f is the primitive cusp
form of S,(/",(8)). Thus our results seem to “explain” some conjectural
examples given in N. Kurokawa [2]. Finally we note that it is also
possible to obtain similar results for Hilbert modular forms over real
quadratic fields of weight (2, 2k —2).

). Then we can prove, for the cusp form F=0,—06,,
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