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On Sufficient Conditions for the Boundedness o
Pseudo.Differential Operators

By Tosinobu MURAMATU*) and Michihiro NAGASE**)
(Communicated by K,6saku YOSIDA, M. g.A., Oct. 12, 1979)

We report here that pseudo-differential operators are bounded in
L, lpoo, i some considerably weak conditions on the smoothness
of their symbols are satisfied.

1. Notations. If x--(x, ..., x,,) is a point in the n-dimensional
Euclidean space R, and =(,...,) a multi-index, then we write
x=x .x, a=a,,.., axe, a, a/ax,, xl=(x+...+x)
+lxl)/, lal=a+" +a. We denote by the difference operator, and
adopt the ollowing conventions’

a(x, , x’)=a(x+ y, , x’)-a(x, , x’),
a(x, , x’)=a(x, +, x’)-a(x, , x’),
,a(x, , x’)=a(x, , x’+ y’)-a(x, , x’).

Let a(x, , x’) be a symbol, that is, a continuous function of (x, , x’)
in R. If m isa non-negative integer, and 01, we define

Ila]l= sup a(x, ,
x, ,x’,lalm

]al+= sup ]A,a(x,

If t and are posiive numbers, we define

w.(a t)= sup 1lAva(x,
lYlt

(a t)= sup ]l.a(x, , x’)II..
ly’lt

’(a; t)It is easy to find that Ila I.c lall., .(a; t)gcw(a; t),
g co’.(a, t) if a< r, where c is a constant independent of a and t.

2. Main results. Our main results are stated as follows"
Theorem 1. If a symbol a(x, ) satisfies the conditions
(a) a I]. is finite, and
(b) w.(a; t) e L (=L([0, 1], t-dt))

for some a>n/2, then the pseudo-differential operator a(X,D) is
bounded in L2(R).

If a symbol a(, x’) satisfies the conditions (a) and
(b’) w(a; t) e L

for some a>n/2, then the pseudo-dierential operator a(Dz, X’) is
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bounded in L(R).
Theorem 2. If a symbol a(x, ) (or a(, x’)) satisfies the condi-

tions (a) and (b) (or (b’)) for some an+l, then the operator a(X, D)
(or a(Dx, X’)) is bounded in L(Rn) (1 p c).

Theorem 3. If a symbol a(x, , x’) satisfies the conditions (a)and
o(a t) +o’(a t) e L* (= L([0, 1], t-dt),(c)
or 0(a t)+oo(a t) L*

for some an, then the pseudo-differential operator a(X, Dz, X’) is
bounded in L.(Rn).

Theorem 4. If a(x, , x’) satisfies the conditions (a) and (c) for
some an/l, then a(X, Dz, X9 is bounded in L(R) (lp oo).

3 Comparison with the previous investigations. Assuming(a)
with a-- n+2 and the condition

o (a t) +o’/(a t) < ct (0< < 1),
(that is, HSlder continuous case) Muramatu (Colloquium at Tokyo
Univ. of Education. See also [7].) and Nagase ([8]) proved L-bound-
edness of the operator a(X, Dx, X’). Mossaheb-Okada ([5]) proved L-
boundedness of the operator a(X, D) under the conditions (a) with a

=n+2 and
o/(a t) <= C (log 2 / t)-,

while Coifman-Meyer ([4]) gave the same boundedness theorem under
the conditions (a) and

o(a t) < c (log 2 / t)-, 3> 1/2,
with a=n+[n/2]+2.

Theorem I is closely related with Cordes-Kato’s theorem ([1], [2]),
which states that the operator a(X, D) is bounded in L. if its symbol
a(x, ) satisfies

lxa(X, )1<C()
for all laid[n/2]+1, lfl]g[n/2]+2, where 0__<pl.

4. An interpolation theorem and some lemmas. We shall state
here an auxiliary results needed in our argument.

Theorem 5. Let X and Y be Banach spaces, and let H(x, x’) be
an .E(X, Y)-valued strongly measurable function of (x, x’) in R, where
_E(X, Y) denotes the space of all bounded linear operators from X to Y.
Assume that the operator T defined by

(4.1) Tu(x)=.[ H(x, x’)u(x’)dx’ for u e 3(R X)

is bounded operator from L(R; X) to L(R; Y), and

(4.2) ess. sup b lZ(x- x’) H(x, x’) I(x,) dx<
bO,x" R d l_j_n

where is the characteristic function of the set (x; lxlb for some
l=]gn}. Then T is a bounded operator from L(R; X) to L(Rn; Y)
for 1p<2.
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This theorem can be proved in the same way as in [6, pp. 96-97].
Lemma 1. Iet m be an integer, 0tl, lp2, lip+lip’--l,

and let f be the Fourier transform of f.
(i) If f() e W(R), $hen f(x)(x) e L,(R).
+ hen f(x)(x+ e L,(R), where B,(R)(ii) If f() e,

denotes the Besov spaces.
Making use of this lemma and HSlder’s inequality, we can prove

the following
Lemma 2. (i) If a symbol a(x,) vanishes at ]lbO, and

satisfies the conditn
(4.3) sup

for some amax (n/2, n/p), then a(X, D) is boundedin L,.
(ii) If a symbol a(,x’) vanishes at bO, and satisfies the

conditions
(4.4) sup a(, x’)1, ,() (lip+lip’=l)

for some amax (n/2, n/p’), then a(Dx, X’) is bounded in L.
5. Sketch of the proofs. Consider first a symbol a(x, ) satisfy-

ing (a) and (b). Let a=m+O, 0K0I. Then, with the aid of the
approximation theorem of symbols (see [3]), we can write as

a(x, )= a0(x, )+a(x, D+a(x, ),
where a0, a, and a are symbols having the ollowing properties:

ao(x, ) vanishes at ]3, while a(x, ) and a(x, ) wnishes at ]2.
a satisfies the conditions
(5.1) [6a,(x, )]
or any and ]m, and

(5.2)
or any , [=m, and []<>/2. a stisfies the conditions
(5.3) Ia(x,)C<>-’’ h(<>-)
for [a]gm, and
(5.4) l,a(x, )[gC.(}-"- [l
for [a[=m and ][(}/2. Here C., is a constant independent of x and, is a constant with 031, and h(t) is a non-decreasing function
of t with h e L.

L-boundedness o a(X, D) has been known (cf. see [2]. This can
be proved also by using CalderSn-Vaillancourt’s lemma). Combining

this with Theorem 5, we get L,-boundedness o a(X, D). Boundedness
of a0(X, D) follows from Lemma 2. To prove boundedness of a(X, D)
we need the integral representation

a(X, D)u: (2)-/ .[: A(t)udt/t,(5.5)

z u(x’)dzdx’,(5.6) A(t)u(x) K(t, x, z)t-
t
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(5.7) K(t, x, z) (2z)-/ J eZa(x, /t)f(ll)d,

where f is a C-function of a real variable whose support is contained
in the interval [1/2, 1], and is a rapidly decreasing C-function.

The operator a(Dz, X’) can be discussed in the same way.
Finally consider a symbol a(x, , x’) satisfying (a) and (c). By the

approximation theorem and the expansion theorem we obtain
a(X, Dx, X’)=ao(X, Dx, X’)+a(X, D)+a.(X, D)+a(X, Dx, X’)

(we consider here the case where (a; t)+’(a; t)eL*), where
ao(X, , x’) satisfies (a) and vanishes at 11_>_3, a(x, ), a.(x, ) and
a(x, , x’) vanishes at Ilg2, a satisfies (5.1) and (5.2), a satisfies (5.3)
and (5.4), and a satisfies (5.3) and (5.4) with h e L*. The rest of the
proof is the same as that oi the case a(x, ).
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