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66. On the Existence of Solutions for Linearized
Euler’s Equation

By Atsushi INOUE® and Tetsuro MIYAKAWA**)

(Communicated by Késaku YO0SIDA, M. J. A., Oct. 12, 1979)

1. Statement of results. Let 2 be a bounded domain in B* with
smooth boundary 62 and v be the unit exterior normal to 2. We
denote by H the real Hilbert space consisting of all the real vector
fields « with coefficients in L*(©2) such that divu=0 in 2 and %-v=0 on
082, and set V=HNH'(Q))". Denoting by P the orthogonal projection
from (L*2))" onto H, we consider the following initial value problem:

du
(LV.P.) —ﬁ+P(a, grad)u=f,
u(0) =1uy,
where f=f(t) and a=a(t) are given H-valued functions and u, is an

element in H. (a, grad) denotes an a’(z, £)d/0x,. Our aim in this note
=1

is to establish the existence and uniqueness of the solution for (I.V.P.)
under certain mild assumptions on data. As a byproduct, we have
proved the essential self-adjointness of iP(a, grad) as an operator on
H when o does not depend on t. When a=wu, (I.V.P.) is the initial
value problem for Euler’s equation of incompressible ideal fluids.
However, we could not take a and % from the same function space (see
Theorem 2 below). We note that nothing is known about the existence
of global weak solutions for Euler’s equation when n >3.

Our method of proof is based on the “vanishing viscosity” argu-
ment for the following problem :
@LV.P.), % +eNu+P(a, grad)u=f,

u(0) =y,

where N denotes the Laplacian, —4, acting on 1-forms with the
Neumann boundary condition: %-v=0, (d%),;n=0 on 92 which is as-
sociated with the bilinear form: (du,dv)-+(ou,ov), defined on
{ue (H'@)"; u-v=0, on 32}, and ¢>0 is a constant. Here we have
denoted by d the exterior differentiation and by ¢ its formal adjoint.
(Throughout this paper, vector fields and 1-forms are identified by
means of Euclidean metric.) See [4] or [5] for the details of the
Neumann problem for differential forms. It is easy to see that N
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defines a non-negative self-adjoint operator on H. See also [2]. Now
our results are as follows.

Theorem 1. Let T be o fixzed positive number. Then, for each
e>0,u, eV, fel0,T;V) and ac L=0,T; HN(W:Q)™, A.V.P.),
admits a unique solution u, such thaot

(i) u,€CU0,T]; VINLXO, T ; (H(2D)"),

(i) du,./dte L*0,T; H).

Theorem 2. Under the assumptions of Theorem 1, each sub-
sequence of {u} converges weak-star in L0, T ; V) and strongly in
L0, T; H) to a unique solution u of (I.V.P.) such that

(@) [Ju@®|:<exp {C(a,)t}(lluollé—l—ﬁ exp {—C(a)s} || (9|} ds) for a.e.

tel0,T],
(b) du/dte LX0,T; H),

© Nu®Iz=uli+2 LT (S (), u(s))ds, for each te[0,T],

where C(a) >0 is a constant depending on the norm of o as an element
tn L=(0, T'; (WH=(2)").

It should be noticed that the above theorems remain valid if we
replace P(a, grad) by — P(a, grad), which amounts to solving (I.V.P.)
backwards in time. Thus, when a is independent of ¢, estimates (a)
and (b) with f=0 together with Stone’s theorem imply the essential
self-adjointness of ¢P(a, grad) restricted to V. More specifically we
have obtained

Theorem 3. For each ac HN(W"(2))", the linear operator
1P(a, grad) is essentially self-adjoint on D(N).

It seems to us that the above result has some relations with a con-
jecture of E. Nelson concerning the self-adjointness of the Liouville
operator (see [1] and [6]).

As is mentioned before, we do not know whether, in Theorem 2,
it is possible to take a and w from L>(0, T ; V) or not, even when n=3, 4.
In this connection we have obtained

Theorem 4. For each w,e H, a € L>(0, T ; H) and f e L}0,T ; H),
there exists at least one function w in L=(0,T ; H) sotisfying (I.V.P.)
in the following sense: The identity

-j (), VI (E)dt— j (t), (a(t), grad)v)h()dt

T
— G, IO+ [ (), (DL,
is valid for each v € (C3(2)" with divv=0, and each he C'([0,T]; R)
with W(T)=0.
Finally, it is to be noticed that our results except Theorem 4 can
not be obtained if we use, instead of N, the Stokes operator, — P4,
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with the Dirichlet boundary condition.
2. Sketch of proof. First we prove Theorem 1 by the method
of Faedo-Galerkin. Let {w,} be a total set of linearly independent

m
vectors in V, and choose u, =2 9%, w; such that u,,—u, in V and
i=1

%o, nlly <||%olly. We determine um(t)=i 9;x(Ow, by the equations:
=1

(1) (Ums W) +e(dtt, dw )+ (@, grad)u,, w)=(f, w)), 1<j<m,
Un(0) =12y, e
If we multiply (1) by g¢,,(t) and add these equations for j, then, since
((a, grad)u,,, u.,,)=0, we get
(@/d®) || un(@® | +2¢ || dun @) 2 =2 (), un (D))
<@/ f@ | +e w5
=(1/e) | SO +e(l| detrn (€[22 + || % (E) [F)-
Integrating this for ¢ we easily derive the boundedness of {u,} in
L=(0,T; HYNL*0,T;V). Notethathere we have used the coerciveness
of the Neumann problem (see [5]). Similarly, by multiplying (1) by
9;»(t) and adding for j, we can deduce the boundedness of {u,} in
L*0,T; H). Thus we may choose a subsequence of {u,} converging
weak-star in L=(0,T; H) and weakly in L*0,T; V) to an element u,
such that «, ¢ L*0, T ; H) and
(2)  (u,v)+e(du,, dv)+((a, grad)u,, v)=(f, v), a.e. in (0, T,
for each ve V. Since v—(f—(a, grad)u,—u,, v) is continuous in L?
topology and V is dense in H (see [2]), it follows from the coerciveness
of the Neumann problem that wu,eL*0,T;(H*2))"), so that
u, € C([0, T1; V) by an interpolation theorem. The proof of the unique-
ness is standard, so omitted.

Next we prove Theorem 2. By virtue of the well-known orthogonal
decomposition theorem for (L*(2))" (see [7, Chap. I]), there exists a
distribution p (x, t) on 2 X (0, T) such that
(3) ou, /ot —edu, + (a, grad)u,+grad p,= f, in £x(0, T).

Applying exterior differentiation to (8) we have

(4) a(du,) /ot —ed(du,) + (a, grad)du,=d f + R(a, D)u,,

where R(a, D) is a homogeneous first order differential operator whose
coefficients are linear combinations of da’/3z,. From this and the fact
that du, satisfies the Neumann condition for 2-forms we obtain

(5) (d/dt) || du,@®) |2 < C(a) || u. B+ dS @) |[Za

Since (d/dt) ||u,@) <2 fE |z % |z < S® [+ w@) & it follows
from (5) that {«,} is bounded in L~(0, T ; V). This and the boundedness
of P(a, grad) from V into H imply that {«.} is also bounded in L*©0, T'; V).
(Note that N is a bounded operator from V into V’.) Now we can
apply the compactness theorem of J. P. Aubin (see [7, Chap. III]) to
conclude that {u,} contains a subsequence converging weak-star in
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L~0, T; V) and strongly in L*(0, T ; H) to a solution « of (I.V.P.) such
that o' € L*Q0, T'; V’). Hence it follows from an interpolation theorem
that « belongs to C([0, T1; H), from which we can easily deduce (¢).
The estimate (a) follows immediately from (5), and (b) is obvious.
The proof of the uniqueness is omitted. Theorem 4 is proved by ap-
proximating w,e H, f(t)e L¥0,7T; H) and a(t)e L~(0,T; H) by the
data satisfying the assumptions of Theorem 1, and using (¢) of
Theorem 2. Finally, Theorem 8 is a direct consequence of the follow-
ing result, due to Faris-Lavine [3].

Theorem. Let A be a symmetric operator and S>=1 be a self-
adjoint operator on a Hilbert space X satisfying for uwe D(S),

(1) [[Au|<C; ||Sul,

(i)  |(Au, Su)—(Su, Aw)|<C, || S ulf,
with some positive constants C, and C, independent of uw. Then A is
essentially self-adjoint on any core of S.

In our case A=iP(a, grad) and S=1+N. The validity of (i) and
(ii) is verified by a direct calculation using the definition and coercive-
ness of the Neumann problem. The symmetricity of iP(a, grad) follows
easily by an integration by parts.
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