77. Remarks on Hadamard's Variation of Eigenvalues of the Laplacian

By Shin Ozawa

Department of Mathematics, University of Tokyo (Communicated by Kôsaku Yosida, M. J. A., Nov. 12, 1979)

§ 1. Introduction. The study in this note is a continuation of our previous paper [6]. Let Ω be a bounded domain in \mathbb{R}^n $(n \geq 2)$ with C^{∞} boundary γ . Let $\rho(x)$ be a smooth function on and ν_x be the exterior unit normal vector at $x \in \gamma$. For any sufficiently small $\varepsilon \geq 0$, let Ω_{ε} be the bounded domain whose boundary γ_{ε} is defined by $\gamma_{\varepsilon} = \{x + \varepsilon \rho(x)\nu_x; x \in \gamma\}$. Let $U_{\varepsilon}(x, y, t)$ be the Green kernel of the heat equation in Ω_{ε} with the Dirichlet boundary condition on γ_{ε} . Let $T_r(t;\varepsilon)$ be the trace of U_{ε} on Ω_{ε} . When t tends to zero, we have the asymptotic expansion $T_r(t;\varepsilon) \sim \sum_{j=0}^{\infty} a_{n-j}(\varepsilon)(\sqrt{t})^{-n+j}$ which was given by Minakshisundarum-Pleijel [5]. In [6], the author gave the asymptotic expansion $\delta T_r(t) \sim \sum_{j=0}^{\infty} b_{n-j}(\sqrt{t})^{-n+j}$ near t=0 of the variational term $\delta T_r(t)$ of the trace which was defined by $\delta T_r(t) = \lim_{\varepsilon \to 0} \varepsilon^{-1}(T_r(t;\varepsilon) - T_r(t;0))$. We proposed the following problem $(\mathbb{E})^n_k$ in [6] and gave an affirmative answer for the case k=0.

Problem (E)_kⁿ. Can we say that the following is valid? (E)_kⁿ $b_{n-k} = \lim_{\epsilon \to 0} \epsilon^{-1}(a_{n-k}(\epsilon) - a_{n-k}(0)).$

In this paper, we shall prove the following

Theorem 1. $(E)_1^n$ is valid for any $n \ge 2$.

The aims of this note are verification of Theorem 1 and an application of Theorem 1 to some eigenvalue problem which will be stated in this section.

We now mention the following

Problem (Q). Characterize the bounded domain Ω with smooth boundary γ having the following property.

(I) For any $\rho(z) \in C^{\infty}(\gamma)$ such that $\int_{\gamma} \rho(z) d\sigma_z = 0$, we have $\delta \lambda_1 = 0$, where $\delta \lambda_1$ is the variational term of the first eigenvalue $\lambda_1 < 0$ of the Laplacian with the Dirichlet condition. Here $d\sigma_z$ denotes the surface element of γ at z.

The condition $\int_{\tau} \rho(z) d\sigma_z = 0$ means that the perturbation of domain we considered preserves the volume of domains infinitesimally. We

call the domain Ω satisfying the property (I) stationary domain. By the theorem of Hadamard-Garabedian-Schiffer we conclude that Ω is stationary if and only if

$$\begin{cases} \varDelta \varphi_{1}(x) - \lambda_{1} \varphi_{1}(x) = 0 & \text{in } \Omega \\ \varphi_{1}(x) = 0 & \text{on } \gamma \\ \frac{\partial \varphi_{1}}{\partial \nu_{x}}(x) = C & \text{on } \gamma, \end{cases}$$

where φ_1 is the normalized eigenfunction of the Laplacian with the Dirichlet condition and C is a constant. See [4] and [2].

The classical Faber-Krahn theorem states that the two dimensional domain Ω with the fixed area A which maximize the first eigenvalue $\lambda_1(\Omega) < 0$ of the Laplacian with the Dirichlet condition is the disk of radius $(A\pi^{-1})^{1/2}$. In connection with this fact, we conjecture that any n-dimensional stationary domain is an open n-ball. For the n-ball with radius p, we have (1), so our problem may be restated as follows.

(Q)bis: Are the following two statements equivalent?

 $(Q)_1$: Ω is an open *n*-ball.

 $(Q)_2$: Ω is an *n*-dimensional stationary domain.

Even if n=2, the implication from $(Q)_2$ to $(Q)_1$ is not trivial. It should be remarked that in general there is a gap between the concept of stationary value and that of maximum value in variational problem. In this paper, we give a partial answer to the problem $(Q)^{\text{bis}}$ by using Theorem 1.

The domain satisfying the following property will be called to be T-stationary:

(II) For any $\rho(z)\in\mathcal{C}^{\infty}(\gamma)$ such that $\int_{\tau}\rho(z)d\sigma_z=0$ and for any t>0, we have $\delta T_r(t)=0$.

By Theorem 3 in [6], we know that any T-stationary domain is stationary. We have the following

Theorem 2. Assume that Ω is T-stationary. Then for n=2 Ω is a disk, and for $n\geq 3$ every component of γ is a hypersurface of constant mean curvature.

In § 2, we consider some geometry of hypersurfaces and the asymptotics of heat equation. In § 3, we give proofs of Theorems 1 and 2.

§ 2. Geometry of hypersurfaces and asymptotic expansion. We proved in [9] that

(2)
$$\delta T_r(t) = t \int_{\tau} \frac{\partial^2 U(y, w, t)}{\partial \nu_v \partial \nu_w} \bigg|_{y=w=z} \rho(z) d\sigma_z.$$

Here we abbreviate $U_0(x, y, t)$ in §1 as U(x, y, t). In [8], we proved the following proposition by using the hard calculus of pseudo-differential operators such as [10].

Proposition 1. If t tends to zero, then

$$(3) t \cdot \frac{\partial^2 U(y, w, t)}{\partial \nu_y \partial \nu_w} \bigg|_{y=w=z} \sim \sum_{k=0}^{\infty} B_{n-k}(z) t^{-(n-k)/2}$$

for any $z \in \gamma$. Here $B_{n-k}(z) \in C^{\infty}(\gamma)$.

We fix an arbitrary point z on γ . Without loss of generalities we can assume that z is the origin of \mathbb{R}^n . We take the z_n -axis as being coincident with the direction of the interior normal and the hyperplane $z_n = 0$ as being coincident with the tangent hyperplane of γ at z. We take an orthonormal coordinate system $z' = (z_1, \dots, z_{n-1})$ on this hyperplane. Then γ can be locally written as $z_n = \theta(z_1, \dots, z_{n-1})$. Here $\theta \in C^{\infty}(\mathbb{R}^{n-1})$ and it has the Taylor expansion $\theta(z_1, \dots, z_{n-1}) = \sum_{|\alpha| \geq 2}^{\infty} \omega_{\alpha} z'^{\alpha}$. In [8], we also proved the following proposition by using the calculus of pseudo-differential operators. See also [7].

Proposition 2. For any k, there exists a constant w(k) such that $B_{n-k}(z)$ is a polynomial of the variables $\{\omega_a\}_{2\leq |\alpha|\leq w(k)}$ whose coefficients depend only on k.

We write $B_{n-k}(z) = B_{n-k}(\{\omega_{\alpha}\})$. Following the idea of [1] and [3], we use the notion of the weight of polynomials. We give the weight $|\alpha|-1$ to the variable ω_{α} , and we give the weight $\sum_{i=1}^{s} \beta_{i}(|\alpha_{j}|-1)$ to the monomial $\prod_{i=1}^{s} (\omega_{\alpha_j})^{\beta_j}$. If P is the sum of the monomials of the same weight, we say that P is homogeneous. Now we prove the following

Theorem 3. $B_{n-k}(z) \equiv B_{n-k}(\{\omega_{\alpha}\})$ is the homogeneous polynomial of the weight k.

Proof. Fix q > 0. We take a new coordinate system \tilde{z} as follows; $\tilde{z}_j = qz_j \ (j = 1, \dots, n)$. Then γ can be locally written as $\tilde{z}_n = \tilde{\theta}(\tilde{z}_1, \dots, \tilde{z}_{n-1})$ $= ilde{ ilde{ heta}}(ilde{z}')\!=\!\sum\limits_{|lpha|>2} ilde{\omega}_{lpha} ilde{z}'^{lpha}. \quad ext{We have the relation}$

$$\tilde{\omega}_{\alpha} = q^{-(|\alpha|-1)} \omega_{\alpha}.$$

On the other hand, the fundamental solution $\tilde{U}(\tilde{x}, \tilde{y}, t)$ of the heat equation $\frac{\partial}{\partial t} - \Delta_x$ with the Dirichlet boundary condition in new co-

ordinates is related to U(x, y, t) by

(5)
$$\tilde{U}(\tilde{x}, \tilde{y}, t) = q^{-n}U(x, y, q^{-2}t),$$

where
$$\Delta_{\tilde{x}}$$
 is the Laplacian in x -coordinates. It is easy to see
$$(6) \qquad \frac{\partial^2 U(\tilde{y}, \tilde{w}, t)}{\partial \nu_{\tilde{y}} \partial \nu_{\tilde{w}}} \Big|_{\tilde{y}=\tilde{w}=\tilde{z}} = q^{-n-2} \frac{\partial^2 U(y, w, q^{-2}t)}{\partial \nu_{y} \partial \nu_{w}} \Big|_{y=w=z},$$

where $\frac{\partial}{\partial v}$ is the derivative along the exterior normal vector. We com-

pare the asymptotic expansion of both sides of (6). Then we get

(7)
$$B_{n-k}(\{\tilde{\omega}_{\alpha}\}) = q^{-k}B_{n-k}(\{\omega_{\alpha}\}).$$

By (4) and (7), we obtain Theorem 3.

We transform $z'=(z_1,\cdots,z_{n-1})$ to another orthonormal basis $\hat{z}'=(\hat{z}_1,\cdots,\hat{z}_{n-1})=(z_1,\cdots,z_{n-1})V$. Here $V\in 0(n-1,\mathbf{R})$. Then γ can be locally written as $z_n=\hat{\theta}(\hat{z}_1,\cdots,\hat{z}_{n-1})=\sum\limits_{|\alpha|\geq 2}\hat{\omega}_\alpha\hat{z}'^\alpha$. We can represent $\{\hat{\omega}_\alpha\}$ explicitly by $\{\omega_\alpha\}$ and $V\in 0(n-1,\mathbf{R})$. It should be remarked that (8) $B_{n-k}(\{\hat{\omega}_\alpha\})=q^{-k}B_{n-k}(\{\omega_\alpha\}),$

since both sides are equal to $B_{n-k}(z)$ which does not depend on the choice of orthonormal basis on the tangent hyperplane of γ at z.

We have the following

Proposition 3. $B_n(z) = e_n$ on γ , and $B_{n-1}(z) = \beta H_1(z)$ on γ . Here $H_1(z)$ denotes the first mean curvature of γ at z, and e_n , β are constants depending only on n.

Proof. Since $B_n(z)$ is homogeneous of weight 0, it must be a constant. Next we study $B_{n-1}(z)$. If we transform z' to $\hat{z}' = z'V$, where $V \in O(n-1, \mathbb{R})$, then the following relation holds.

(9)
$$\hat{\omega}_{kh} = \sum_{i,j=1}^{n-1} V_{ki} \omega_{ij} V_{ih}.$$

The above relation can be rewritten as

$$\hat{\omega} = V \omega V^{-1},$$

where ω and $\hat{\omega}$ is the matrix with the components $\{\omega_{ij}\}$ and $\{\hat{\omega}_{kh}\}$ respectively. Since $B_{n-1}(z)$ is homogeneous of weight 1, it must be written as $B_{n-1}(z) = \sum\limits_{i,j=1}^{n-1} s_{ij}\omega_{ij}$, where s_{ij} is a constant which depend only on n. So we have also $B_{n-1}(z) = \sum\limits_{i,j=1}^{n-1} s_{ij}\hat{\omega}_{ij}$ for any $\hat{\omega}_{ij}$ with respect to any other orthonormal coordinates \hat{z}' . Finally by the theory of orthogonal invariants such as [11], we conclude that $s_{ij} = \tau \delta_{ij}$ where τ is a constant and δ_{ij} is the Kronecker delta. It is well known that $H_1(z) = 2(n-1)^{-1}\sum\limits_{i=1}^{n-1} \omega_{ii}$. The proof is over.

§ 3. Proofs of Theorems 1 and 2. The coefficients $a_n(\varepsilon)$ and $a_{n-1}(\varepsilon)$ in the asymptotic expansion of $T_r(t;\varepsilon)$ are represented as $a_n(\varepsilon) = C_n |\Omega_{\epsilon}|$, $a_{n-1}(\varepsilon) = C_{n-1} |\gamma_{\epsilon}|$. Here C_n and C_{n-1} are non zero constants which depend only on n. And here $|\Omega_{\epsilon}|$ denotes the volume of Ω_{ϵ} and $|\gamma_{\epsilon}|$ denotes the area of γ_{ϵ} . Therefore we have to show

$$(11) b_n = C_n \int_{z} \rho(z) d\sigma_z$$

and

(12)
$$b_{n-1} = (n-1)C_{n-1} \int_{T} H_{1}(z)\rho(z)d\sigma_{z}.$$

By Theorems 1 and 2 in [6], we have

$$b_{n-k} = \int_{\tau} B_{n-k}(z) \rho(z) d\sigma_{z}.$$

So we can restate $(E)_k^n$ (k=0,1) as follows.

(E)₀ⁿ
$$e_n = C_n$$
,
(E)₁ⁿ $e_{n-1}(z) = (n-1)C_{n-1}H_1(z)$.

Let B_R be the open ball with radius R centered at the origin. Let $0 \ge \lambda_1(R) \ge \lambda_2(R) \ge \cdots$ be the eigenvalues of the Laplacian with the Dirichlet boundary condition at ∂B_R . We arrange them according to their multiplicities. We have $\lambda_i(R) = \lambda_i(1)R^{-2}$. Put $T_r(t|B_R) = \sum_{j=1}^{\infty} e^{\lambda_j(R)t}$.

And put $\rho(z)=1$ on $\gamma=\partial B_R$. Then we have

$$\delta T_r(t) = \frac{\partial}{\partial R} T_r(t \mid B_R) = -2tR^{-1} \frac{\partial}{\partial t} T_r(t \mid B_R).$$

On the other hand, by the calculus of pseudo-differential operators we can get the following proposition. We need nontrivial calculations to prove it. See [8].

Proposition 4. When t tends to zero, $\frac{\partial}{\partial t}T_r(t|B_R)$ has the asymptotic expansion

$$\frac{\partial}{\partial t} T_r(t \mid B_R) \sim \sum_{k=0}^{\infty} M_{n-k}(R) t^{-(n+2-k)/2}.$$

By Proposition 4, we can differentiate with respect to t the asymptotic expansion $T_r(t|B_R) \sim \sum_{k=0}^{\infty} a_{n-k} (\sqrt{t})^{-n+k}$ term by term. Therefore we have

(13)
$$\delta T_r(t) \sim na_n R^{-1}(\sqrt{t})^{-n} + \cdots + (n-k)a_{n-k}R^{-1}(\sqrt{t})^{-n+k} + \cdots$$
. On the other hand, we have

(14)
$$\delta T_r(t) \sim e_n |\gamma| (\sqrt{t})^{-n} + \beta \int_{\tau} H_1(z) d\sigma_z \cdot (\sqrt{t})^{-n+1} + 0(t^{-n/2+1}).$$

By (13) and (14), we have $|\gamma| e_n = na_n R^{-1}$ and $\beta |\gamma| R^{-1} = (n-1)a_{n-1}R^{-1}$. Since $a_n = C_n |B_R|$, $a_{n-1} = C_{n-1} |\partial B_R|$, we get Theorem 1.

By Theorem 1 we have the following

Corollary. If t tends to zero, then

(15)
$$\delta T_r(t) = C_n \int_{\tau} \rho(z) d\sigma_z \cdot t^{-(n+2)/2}$$

$$+ (n-1)C_{n-1} \cdot \int_{\tau} H_1(z) \rho(z) d\sigma_z \cdot t^{-(n+1)/2} + 0(t^{-n/2}),$$

where $C_n \neq 0$, $C_{n-1} \neq 0$.

Proof of Theorem 2. The proof of Theorem 2 is obvious for $n\geq 3$, since we have (15). Now we study the case n=2. By (15) we can conclude that γ consists of finite disjoint union of circles. Since we know that any T-stationary domain is stationary by Theorem 3 in [6], we have (1). Let γ be the largest circle contained in γ . By the uniqueness theorem of Holmgren we conclude that the level set $\gamma(s) = \{z : \varphi_1(z) = s, z \in \Omega\}$ consists of the finite disjoint union of circles with the same center as γ . It is well known that $\varphi_1(z)$ does not take zero in

 Ω . Summing up these facts we conclude that Ω must be the disk or the annulus. For the annulus $\{z \in \mathbb{R}^2 : r_1 < |z| < r_2\}$, $\varphi_1(z)$ can be calculated explicitly. If $r_1 > 0$, then $\varphi_1(z)$ with respect to this domain does not satisfy (1). The proof is over.

References

- [1] Atiyah, M., R. Bott, and V. K. Patodi: Invent. math. 19, 279-330 (1973).
- [2] Garabedian, P. R., and M. Schiffer: J. Anal. Math. 2, 281-368 (1952-53).
- [3] Gilkey, P. B.: The Index Theorem and the Heat Equation. Publish or Perish Inc., Boston (1974).
- [4] Hadamard, J.: Oeuvres. C.N.R.S. 2, 515-631 (1968).
- [5] Minakshisundarum, S., and A. Pleijel: Canad. J. Math. 1, 242-256 (1949).
- [6] Ozawa, S.: Proc. Japan Acad. 54A, 322-325 (1978).
- [7] —: Studies on Handamard's variational formula. Master's Thesis, Univ. of Tokyo (1979) (in Japanese).
- [8] —: Asymptotics of eigenvalues and eigenfunction of the Laplace operator (in preparation).
- [9] —: Hadamard's variation of the Green kernels of heat equation and their traces (in preparation).
- [10] Seeley, R.: Amer. J. Math. 91, 889-919 (1969).
- [11] Weyl, H.: The Classical Groups. Princeton N.J. (1946).