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1. Introduction. The study in this note is a continuation of
our previous paper [6]. Let tO be a bounded domain in R (n_>2) with
C boundary ,. Let p(x) be a smooth function on and v be the exterior
unit normal vector at x e ,. For any sufficiently small _>0, let/2, be
the bounded domain whose boundary ,, is defined by ,,={x+ep(x)v
x e ,}. Let U.(x, y, t) be the Green kernel of the heat equation ill 9.
with the Dirichlet boundary condition on ,,. Let T(t; ) be the trace
of U. on 2.. When t tends to zero, we have the asymptotic expansion

T(t; e)Y, a_(,)(/t)-/ which was given by Minakshisundarum-
j=O

Pleijel [5]. In [6], the author gave the asymptotic expansion ,T(t)

b_(/)-/ near t--0 of the variational term T(t)of the trace
j=0

which was defined by 6T(t)= lim -(T(t )-- T(t 0)). We proposed

the following problem (E) in [6] and gave an affirmative answer for
the case k=0.

Problem (E). Can we say that the following is valid?
(E) b_=lim s-(an_(s)--a_(O)).

*-*0

In this paper, we shall prove the following
Theorem 1. (E) is valid for any n >_2.
The aims of this note are verification of Theorem 1 and an applica-

tion of Theorem 1 to some eigenvalue problem which will be stated in
this section.

We now mention the following
Problem (Q). Characterize the bounded domain [2 with smooth

boundary having the following property.

(I) For any p(z) e C(") such that [ p(z)da,=O, we have 2=0,
d

where is the variational term of the first eigenvalue 0 of the
Laplacian with the Dirichlet condition. Here da, denotes the surface
element of at z.

The condition [ p(z)da=O means that the perturbation of domain

we considered preserves the volume of domains infinitesimally. We
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call the domain/2 satisfying the property (I) stationary domain. By
the theorem of Hadamard-Garabedian-Schiffer we conclude that tO is
stationary if and only if

(x)--(x) 0 in/2

(x) 0 on ,
( l

(x)= C on ,
where is the normalized eigenfu,nction of the Laplacian with the
Dirichlet condition and C is a constant. See [4] and [2].

The classical Faber-Krahn theorem states that the two dimensional
domain tO with the fixed area A which maximize the first eigenvalue
(9)0 of the Laplacian with the Dirichlet condition is the disk of
radius (A-9/. In connection with this fact, we conjecture that any
n-dimensional stationary domain is an open n-ball. For the n-ball
with radius p, we have (l), so our problem may be restated as follows.

(Q)" Are the following two statements equivalent?
(Q)" /2 is an open n-ball.
(Q)" t9 is an n-dimensional stationary domain.
Even if n=2, the implication from (Q) to (Q) is not trivial. It

should be remarked that in general there is a gap between the concept
of stationary value and that of maximum value in variational problem.
In this paper, we give a partial answer to the problem (Q) by using
Theorem 1.

The domain satisfying the following property will be called to be
T-stationary"

(II) For any p(z)e C() such that _-I’r p(z)da=O and for any t0,

we have 3T(t)=0.
By Theorem 3 in [6], we know that any T-stationary domain is

stationary. We have the following
Theorem 2. Assume that [2 is T-stationary. Then for n=2/2

is a disk, and for n
_
3 every component of is a hypersurface of con-

stant mean curvature.
In 2, we consider some geometry of hypersurfaces ad the

asymptotics of heat equation. In. 3, we give proofs of Theorems 1
and 2.

2. Geometry of hypersurfaces and asymptotic expansion. We
proved in [9] that

U(y,w( 2 ) T(t)= t p(z)da.

Here we abbreviate U0(z, y, t) in 1 as U(, y, t). In [8], we proved
the following proposition by using he hard calculus of pseudo-differ-
ential operaors such as [10].
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Proposition 1. If t tends to zero, then
OU(y, w t) ., B_(z)t__)/(3) t.

for any z e ’. Here B_(z) e C().
We fix an arbitrary point z on ,. Without loss of generalities we

can assume hat z is the origin of R. We take the z-axis as being
coincident with the direction of the interior normal and the hyperplane
z=0 as being coinciden wih he angent hyperplane o , at z. We
take an orthonormal coordinate system z’= (z, ..., z_) on this hyper-
plane. Then , can be locally written as z=t(z,...,z_). Here

t e C(R-) and it has he Taylor expansion t(z, ,z_) O).Z
lal:>2

In [8], we also proved the following proposition by using the calculus
o pseudo-differential operators. See also [7].

Proposition 2. For any k, there exists a constant w(k) such that
B_(z) is a polynomial of the variables (,}.,,1() whose coefficients
depend only on k.

We write B_(z)=B_d(,}). Following the idea of [1] and [3],
we use the notion of the weight of polynomials. We give the weight

[al--1 to the variable ,, and we give the weight . fl([al--1) to the
j=l

S

monomial l-[ (w-). If P is the sum of the monomials of the same
j=l

weight, we say that P is homogeneous. Now we prove the following
Theorem 3. B_(z)=_B_({o.}) is the homogeneous polynomial

of the weight k.
Proof. Fix q0. We take a new coordinate system as follows

2=qz (]= 1, ., n). Then . can be locally written as 2n=5(2, ", 2_)
=)(2’)= , ,2’". We have the relation

lal>2

(4)
On he other hand, the fundamental solution U(, , t) of he hea

equation -----d with he Dirichlet boundary condition in new co-
t

ordinates is related o U(x, y, t) by
( 5 ) U(, #, t)= q-U(x, y, q-t),
Where d is the Laplacian in x-coordinates. It is easy to see

U(y, w, q-t)U(, , t) q_( 6 ) --= O,w ,==’
where --- is the derivative along the exterior normal vector. We com-

pare the asymptotic expansion of both sides of (6). Then we get
( 7 ) B_({5.})=q-B_({o,}).
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By (4) and (7), we obtain Theorem 3.
We transform z’--(z,...,z_) to another orthonormal basis

2’=(2,...,2,_)=(z,...,z_)V. Here Ve0(n-l,R). Then . can
be locall:g written as z t(2, ,2_) , oo.z We can represent

(&.} explicitly by (w.} and V e 0(n-l, R). It should be remarked that
( 8 ) B,_((&.})--q-B,_((oo.}),
since both sides are equal to B_(z) which does not depend on the
choice o orthonormal basis on the tangent hyperplane of y at z.

We have the following
Proposition 3. B.(z)=e. on ?, and B,_(z)=flH(z) on ?. Here

H(z) denotes the first mean curvature of at z, and e,, fl are constants
depending only on n.

Proof. Since B.(z) is homogeneous of weight O, it must be a con-
stant. Next we study B_(z). I we transform z’ to 2’=z’V, where
V e 0(n-1, R), then the ollowing relation holds.

n--1

( 9 ) (o,= y], VoijV.
ij=l

The above relation can be rewritten as
(10) = VooV-,
where w and is the matrix with the components {w} and {&} respec-
tively. Since B,_(z) is homogeneous of weight 1, it must be written

as B,_(z)= , s, where s is a constant which depend only on n.
i,j=l

So we have also B,_(z)= ] s or any& with respect to any other
i,j =1

orthonormal coordinates 2’. Finally by the theory o2 orthogonal in-
wrights such as [11], we conclude that s=r3 where r is a constant
and is the Kronecker delta. It is well known that H(z)

=2(n-1)- , w. The proo is over.
i=l

3. Proofs of Theorems 1 and 2. The coefficients an(e) and
a,_(e) in the asymptotic expansion o T(t; D are represented as
=c. [r).l, a._,()=c._, Ir.I.
which depend only on n.

denotes the area of ..
(11)

and

Here C and C_1 are non zero constants
And here ]9.[ deaotes the volume o 9. and
Therefore we have to show

b=C p(z)d

(12) bn_ (n- 1)Cn_l Hl(z)p(z)daz.
By Theorems 1 and 2 in [6], we have

bn_ f B._(z)p(z)daz.
So we can restate (E) (k=0, 1) as follows.



332 S. OZAWA [Vol. 55 (A),

(E) e=C,
(E) e_(z) (n-- 1)C_H(z).

Let Bz be the open ball with radius R centered at the origin. Let
0_(R)_.(R). be the eigenvalues of the Laplacian with the
Dirichlet boundary condition at 3B. We arrange them according to

their multiplicities. We have (R)=(1)R-. Put T(tBz) e.
And put g(z)=l on =3B. Then we have

T(t]Bz)=_2$R-T(t]Bz).T($)=
On the other hand, by the calculus of pseudo-differential operators

we can get the ollowing proposition. We need nontrivial calculations
to prove it. See [8].

4. When t tends to zero, T(t B) has theProposition asymp-

totic expansion

T(t]B) Mn_(R)t-+
t =o

By Proposition 4, we can differentiate with respect to t the asymp-

totic expansion T(tB) a_( )-+ term by term. Therefore
k=0

we have
(13) 8T(t)naR-( )-+ +(n-)a_R-()-++
On the other hand, we have

()-+ H(z)da.( )-++0(-+).(14) 3T(t)e

By (13) and (14), we have [ e=naR- and ]yR-=(n--1)a_R-.
Since a=C B, a_=C_ 3B, we get Theorem 1.

By Theorem 1 we have the following

Corollary. If ends o zero, $hen

T(t)=C [ p(z)da, t-+>/(15)

(n-- 1)C,_. [ H(z)p(z)da t-( >/+ O(t-’/),+
where C,#O, C,_#0.

Proof of Theorem 2. The proof of Theorem 2 is obvious for
n3, since we have (15). Now we study the case n=2. By (15) we
can conclude that consists of finite disjoint union of circles. Since

we know that any T-stationary domain is stationary by Theorem 3 in

[6], we have (1). Let be the largest circle contained in r. By the
uniqueness theorem o Holmgren we conclude that the level set [(s)

{z ,(z)= s, z e 9} consists of the finite disjoint union o circles with
the same center as . It is well known that ?,(z) does not take zero in
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9. Summing up these acts we conclude that /2 must be the disk or
the annulus. For the annulus {z e R; rlzlr.}, (z) can be calcu-
lated explicitly. If r0, then o(z) with respect to this domain does
not satisfy (1). The proof is over.

References

1 Atiyah, M., R. Bott, and V. K. Patodi: Invent. math. 19, 279-330 (1973).
[2 Garabedian, P. R., and M. Schiffer: J. Anal. Math. 2, 281-368 (1952-53).
[3] Gilkey, P. B.: The Index Theorem and the Heat Equation. Publish or

Perish Inc., Boston (1974).
4] Hadamard, J.: Oeuvres. C.N.R.S. 2, 515-631 (1968).
5 Minakshisundarum, S., and A. Pleijel" Canad. J. Math. 1, 242-256 (1949).
6 Ozawa, S.: Proc. Japan Aca.d..4A, 322-325 (1978).
7] --: Studies on Handamard’s variational formula. Master’s Thesis, Univ.

of Tokyo (1979) (in Japanese).
8 --: Asymptotics of eigenvalues and eigenfunction of the Laplace opera-

tor (in preparation).
9 --: Hadamard’s variation of the Green kernels of heat equation and their

traces (in preparation).
[10] Seeley, R.: Amer. J. Math. 91, 889-919 (1969).
[11] Weyl, H.: The Cla.ssical Groups. Princeton N.J. (1946).


