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Density Matrix of Impenetrable Bose Gas

By Michio JIMBO, Tetsuji MwA, Yasuko MORI,*) and Mikio SATO
Research Institute for Mathematical Sciences, Kyot.o University

(Communicated by KSsaku YOSIDA, M. J. A., Nov. 12, 1979)

In this article we report the ollowing result concerning system
of impenetrable bosons in one dimension at zero temperature: The
one particle reduced density matrix p(x) satisfies a non-linear differ-
ential equation, an equivalent o a Painlev equation oi the fith kind.
This enables us to calculate the small and large x behaviors of p(x) to
an arbitrary order.

For the statement of the problem see [1] and references cited
therein. As mentioned in [2], our calculation is done by relating the
problem to the preceding result obtai,ned there concerning the double
scaling limit of the XY model.

Main results are summarized in 1. Their derivation is briefly
described in 2-3.

1. Results. Let p([x--x’ ]) denote the thermodynamic limit o the
one particle reduced density matrix with p0 p(0) normalized to be =-
(for the definition see [1]). It is known ([3]) that p(x) is an entire unc-
tion of x.

We find that p(x) is expressed as
x, (( +(1) p(x)=po exp

3o dx’[4y(L +
with y=y(x’),

where y=y(x) is a solution o the ollowing Painlev equation of the
fifth kind:

(2)
dx -( 1.+ y_ll )( dy ) xl dxdY + (y-1)(y+x)

+ + y(y+ 1)
x y--1

with a=, fl=- ’=--2i, =2.-5’2

If we set

( 3 ) a(x)= xd log p(x),
dx

then a=a(x) itself satisfies the non-linear ordinary differential equation
*) On leave from Ryukyu University.
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It is worth noting that the density matrix of free fermion p..(x)
sin x also satisfies the same equations (3)-(4).
ux
The small and large x behaviors of p(x) are determined from the

differential equation (4). The boundary condition is fixed by the first
two terms obtained by Lenard [3] (x-+0) and Vaidya-Tracy [1] (x--o).
The results read as follows.

( 5 ) t,t(x)=:t----x.+x+-Lx3 5 -- 7
61C xT+(l C x_ 11.23C x9+ 22 33 5 72 k 9 + 23 3 53 73. 5/

(1 163C )x+... (x0)+2.3.5.7
1 (he choice C=O leads o -1 sin z)po p..(x)-with C--
2u x

( ( 1)+ sin2x( 6 ) plp(X) p 1+ cos 2x--
2X

3 /11 ) 3.151--31. cos 2x
2x

sin 2x

+
2x

3.1579. cos 2x--1 9

3.5.7.311 1+ sin 2x+
2X 2’3X

( ) )c--
2 cos2x+2cos4x +...

(x)
where c is a constant. The constant p was determined by Vaidya-
Tracy [1] to be e/2-VA- (A =Glaisher’s constant).

Remark 1. Sometimes it is convenient to rewrite (4) as first
order system
(7) =(1+) sind

x d] 2x+2(1+ cos
dx

where , ] are related to a and y through
da( 8 ) -- x’ 7=i log (--y)

x+-(1+)(1+cos ]) 1.

Remark 2. The system (7) has x= oo as, a singularity of "irreg-
ular Briot-Bouquet" type (see [4]). This guarantees the asymptotic
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structure at x-+co a(x)= , a(X), where a(x) are polynomials in e+
n=o X

(cf. [1]).
Remark :. The results ia [1] coincide with ours to the orders of

1 (for large x). The higher order terms are, how-x (for small x) and x-
ever, to be corrected as above so that the differential equation (4) holds.

2. The results of 1 are obtained by relating the problem to the
double scaling limit of the XY model ([5][2]). It has beea observed by
Schultz [6] that the system of impenetrable bosons, once discretized on

a finite lattice, is equivalent to an isotropic spin XY chain. Making
2

use of this connection Vaidya-Tracy [1] (see [7] for details) studied the
one particle reduced density matrix as a limit of the double-scaled 2
point function r(a, a g) of the latter namely we have, i the notatio
of [2],
( 9 ) p( a--a ) r(a,, a g).

For finite g0 the logarithmic derivative of the n point function
d log r is expressed in terms of a solution of non-linear total differ-
ential equations involving 2n 2n matrices ((35), (36), (38) in [2]). We
begin by showing that for n=2 the size of the matrices is reducible to
2 2. In the sequel we employ the notations in [2] without mention-
ing further.

Define v(p)=v(p, x , g)(k=0, 1, 2, 3) by the series

(10) v(p)=’ (i) I"" I dp dPe_,,...,
o 2 2

C-x...xC-

1 1 1X f’. -)+’"
P+P Pl+P P-+P

where --p is supposed to lie outside the contour C_ of p-integration.
Here the sum ’ extends over even (k=0, 2) or odd (k=l, 3), and
e= +1(k=0,3), =-1(k=1,2). These u.nctions are related to wz’(p)
in [2] through

(11) ,,()’"(p)=e-(3(p)v( P)+ ,’v0( P))
wl)’"(p)=e-’(,,’v( p)+ ,,w(p)v, p))
w(:)’’’, (p) e-(,,’v(p) + _,,(p)v,(p))

22 k] e

where we have made the identification x=a-a>O, 2==2. The
choice 2= 1 corresponds to the original problem. Now set

v,(-(12) Y()=,V() (-:) d,())"
hen de Y(p)=d(), so ha () is holomorphie and inerible
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everywhere except for p= c, (s= 1, 2, 3, 4) and p-c.
an expression
(3)

with (p) holomorphic and invertible at p=c.
has a monodromic property
(14) ,Y(p) Y(p)M,

M=M.=( 1 __0) M=M=(122 1 0
For p--c Y(p) has an asymptotic expansion

At p=c it has

Y(p) (p)(p c) (s 1, 2, 3, 4)

L=L= L=L=
12 0 --In particular Y(p)

(15) Y(p)=(I+Y1
__
Y __.,p .)(1 Pe)

valid in the full sector 0=<arg pg2, Ip]>.l.
We thus conclude that the matrix o l-forms/2 =dY. Y- takes the

form(35)[2]whereA,_(0 ix)and
(16) -\v(- c)/

2 k(-- c)]

(17) ) ( iv (O)
iv))dx.

(s 1, 2)

(s=3, 4)

In (16) (p) is defined as the series (10) where the contour of p is
modified to encircle --p (Fig. 1),

Fig. 1

and in (17) v() is defined by v(p)--, (p-+c) for/=1, 3 With

this replacement the deformation equations (36), (37) in [2] remain valid.

( 0We note thatA==A is given byA= _ixvO)
Finally the logarithmic derivative of the 2 point unction =

d log r is given by

(18) =-trace YdA+ -- trace (,(c)-’(c)Ldc)-l d(c-c,)
S=I C
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1 , (AsA,,-L)d log (c-- c,)=trace AdA+ @A+

+FAro)
with L= 1 A.=,=I Ac and F==I Adc.

(19)

We have also

(9(/)(al)(/)(a.)} iv(O)= l(AI)2
(e(a)(a)} x

((-)(a)(-)(a)} ivy) (A).
The limit g0 correspoads to the pairwise coalescence

(21) A+ +A_ ( 0 e,..
el 2 !

Note that w=d log r. (18) also remains finite, except for the diver-

gent factor --1__ , d(c-c,)=d log g-V(1-g)-v* corresponding to (9).
8 ’ c-c,

Since the monodromy is preserved in the above process, the mono-

,/1-4-2 )dromy for (20) at p=1 is given by MM=i cad MM

1_4 =(MM)- respectively. On the other hand we have

A+ =A_= (0 1) or =0. Hence by continuity the eigenvalues ofA
are either (0(),1--0()) or (--0(),l+O()) where eo()=l-2

2i#i--, O(0)=0. The result o Vaidya-Tracy [1] tells that the

(1) orbothoACombining_correct choice or 2=1 should be
2’

this with (21) we ca set, or 2= 1,

1( i$ (1-- i$)e-(+z))(22) A
(1 i#)e( 2- i$

where we have set

branch points c, c1, c, c-1. Although the matrices A, may

diverge individually, the sums A+A,A.+A (and hence --(A,
\ \

2 - ted to fiite limits A /,
A_ respectively (cf. [8] 2.4).

The limiting differeatial equations rhea read as
(20) dY=Y

( /(o9=\p--I p+l e. zp ]
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The fact that (20) has two regular singularities and an irregular
singularity of rank one implies that the deformation equatio d9-9
=0 is integrable i terms o a Painlev transcendent of the fifth kind.
In our case, substituting (22) to

(23) xdA=[(O e A ]
we obtain (7) and

(24)

Finally (18) yields

(25) d
dx

xd=2dx cs (-) +2i sin (-).
1log p(x)=i(A
x

=+--1(1 +)(1 +cos V)--1
2x x

which is the results (3) and (8).
Erratum and comment for XI [9]
p. 8, (37) [9] should be corrected as a[M]=r[T].
Theorem 5 has previously been obtained by Widom [10]. He has

also shown [11] that the product o haft infinite Toeplitz operator (32)
[9] of M with that of M- differs from 1 by a trace-class operator, ad
that a[M] coincides witl its determinant. The authors wish to thank
Prof. H. Widom for calling their attentio to his results.
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