91. The Space of Distributions Treated as a Ranked Space

By Shizu NAKANISHI

Department of Mathematics, University of Osaka Prefecture (Communicated by Kôsaku Yosida, M. J. A., Dec. 12, 1979)

For the space (\mathcal{D}) , K. Kunugi pointed out in [4] that, if we use the method of ranked spaces introduced by Kunugi in 1954 [3], (\mathcal{D}) can be treated as a space having a countable base (cf. [6, III, § 1]). In this paper we will show that the same assertion also holds for the space (\mathcal{D}') of distributions. Indeed, the space (\mathcal{D}') can be defined as a ranked space having a countable base, in such a way that the r-convergence in the ranked space (\mathcal{D}') coincides with the weak convergence in (\mathcal{D}') (cf. [6, III, § 3]). We moreover show that the ranked space (\mathcal{D}') so defined is a complete ranked vector space satisfying the r-second countability axiom, and show that the family of r-Borel sets in the ranked space (\mathcal{D}') coincides with the family of Borel sets in the weak topology of (\mathcal{D}') .

For notations and definitions in the distribution theory and the ranked space theory we refer to [6] and [5], respectively. In particular, we say that the base of a ranked space E is countable if, for each $p \in E$ and for each $n \in N$, where $N = \{0, 1, 2, \dots\}$, preneighborhoods of p of rank n are at most countable infinity; and say that a ranked space E satisfies the r-second countability axiom if there exists a countable collection \mathcal{W} of preneighborhoods such that, for any r-open set O in E and any point $p \in O$, there exists a $W \in \mathcal{W}$ such that $p \in W \subset O$. We call the members of the smallest σ -algebra which contains all of the r-open sets in a ranked space E the r-Borel sets in E.

We first give the definition of the ranked space (\mathcal{D}) in a slight modification of the definition of Kunugi. For $l \in \mathbb{N}$, by (\mathcal{D}_l) we denote the vector subspace of (\mathcal{D}) consisting of all functions of (\mathcal{D}) which vanish outside the set $K(l) = \{x = (x_1, \dots, x_n) \in \mathbb{R}^n : |x_i| \leq l+1 \text{ for } i=1, \dots, n\}$. Consider in (\mathcal{D}_l) the countable system of norms:

$$\|\phi\|_{m} = \sup \{ \sup_{x} |D^{p}\phi(x)| : p = (p_{1}, \dots, p_{n}), p_{i} \leq m \}$$
 for $i = 1, \dots, n \}, (m \in N).$

Corresponding to $m \in N$ and $\varepsilon > 0$, consider the set $\{\phi \in (\mathcal{D}_l) : \|\phi\|_m < \varepsilon\}$, denoted by $S(l, m, \varepsilon)$. We define, for each $l \in N$, the ranked space (\mathcal{D}_l) as a ranked space $((\mathcal{D}_l), \mathcal{CV}^l(\phi), \mathcal{CV}^l_m)$ provided with $\mathcal{CV}^l(\phi) = \{\phi + S(l, m, \varepsilon) : m \in N, \varepsilon > 0\}$ and $\mathcal{CV}^l_m = \{\phi + S(l, m, 1/2^m) : \phi \in (\mathcal{D}_l)\}$; and define the ranked space (\mathcal{D}) as a ranked space $((\mathcal{D}), \mathcal{CV}(\phi), \mathcal{CV}_m)$ provided with $\mathcal{CV}(\phi) = \{\phi + S(l, m, \varepsilon) : l, m \in N, \varepsilon > 0\}$ and $\mathcal{CV}_m = \{\phi + S(l, m, 1/2^m) : l \in N, \phi \in (\mathcal{D})\}$. We will denote the preneighborhood $\phi + S(l, m, 1/2^m)$ of rank m of ϕ

by $V(\phi; l, m)$.

Lemma 1. For some $\alpha > 0$, let $M \subset \{\phi \in (\mathcal{Q}_l) : \|\phi\|_{m+1} \leq \alpha\}$. Then, for any $\varepsilon > 0$, there exist $\phi_1, \dots, \phi_s \in M$ such that $M \subset \bigcup_{i=1}^s \{\phi_i + S(l, m, \varepsilon)\}$ (cf., for example, [1, p. 55]).

Proposition 1. For each ranked space (\mathcal{D}_l) $(l \in N)$, there exists a countable set which is dense in the ranked space (\mathcal{D}_l) .

A functional defined on (\mathcal{D}) is r-continuous in the ranked space (\mathcal{D}) if and only if it is r-continuous in every ranked space (\mathcal{D}_l) $(l \in N)$; a functional defined on (\mathcal{D}_l) is r-continuous in the ranked space (\mathcal{D}_l) if and only if it is continuous in the topology of the ordinary sense defined by the countable system $\|\cdot\|_m$ $(m \in N)$ of norms (see [1, p. 19]); and a linear functional defined on (\mathcal{D}) is a distribution if and only if it is r-continuous in the ranked space (\mathcal{D}) .

We denote the set $\{\phi \in (\mathcal{D}_l) : \|\phi\|_m \leq 1\}$ by B_m^l . For a linear functional f defined on (\mathcal{D}) , we define $\|f\|_m^l = \sup T_l$ if T_l is bounded above, and $e + \infty$ if T_l is unbounded above, where $T_l = \{|f(\phi)|; \phi \in B_m^l\}$.

Lemma 2. Let

$$A = \{ f \in (\mathcal{D}') : ||f||_{m_i}^i < \alpha_i \text{ for } i = 0, 1, \dots, j \}, \\ B = \{ f \in (\mathcal{D}') : ||f||_{n_i}^i < \beta_i \text{ for } i = 0, 1, \dots, j' \}.$$

Then, if $A \supset B$, $j \leq j'$ and $n_0 \leq n_1 \leq \cdots \leq n_{j'}$, it holds that $m_i \geq n_i$ for i = 0, $1, \dots, j$.

Lemma 3. Let A and B be as in Lemma 2. If $A \supset B$ and $n_0 \leq n_1 \leq \cdots \leq n_{j'}$, then $j \leq j'$.

Lemma 2 can elementarily be proved, and Lemma 3 is immediate from Lemma 2.

Corresponding to a system of non-negative integers: $m_0 \le m_1$ $\le \cdots \le m_j$, consider the set

$$\{f \in (\mathcal{D}'): ||f||_{m_i}^i < 1/2^j \text{ for } i=0,1,\cdots,j\},$$

denoted by $K(j, \{m_i\})$. Then

Lemma 4. $K(j, \{m_i\}) \supset K(j', \{m'_i\})$ holds if and only if $j \leq j'$ and $m_i \geq m'_i$ for $i = 0, 1, \dots, j$.

Proof. The "if" part is immediate from the fact that $||f||_{m'}^{l} \ge ||f||_{m}^{l}$ if $m' \le m$. The "only if" part follows from Lemmas 2 and 3.

Let $f \in (\mathcal{D}')$. Corresponding to each $j \in N$ and each system of nonnegative integers: $m_0 \leq m_1 \leq \cdots \leq m_j$, we define a preneighborhood of f by $f+K(j,\{m_i\})$. A preneighborhood $f+K(j,\{m_i\})$ is said to be of rank j. Denote by CV(f) the family of all preneighborhoods of f and by CV_f the family of all preneighborhoods of rank f. Then, the space f provided with f f (f (f (f (f (f)) and f (f) becomes a ranked space. Moreover, as is easily seen, the base of the ranked space f is countable. From now on the ranked space f means the ranked space f so defined. We will denote the preneighborhood f (f) of rank f of f by f (f), f (f).

Proposition 2. (1) The family of preneighborhoods in the ranked space (\mathcal{D}') satisfies the axioms (B) and (C) of Hausdorff (see [2, p. 213]).

(2) The ranked space (\mathcal{D}') is a ranked vector space satisfying the condition (b) of Proposition 29 in [5].

Lemma 5. Let $V(f; j, \{m_i\}) \supset V(f; j', \{m'_i\}) \supset V(g; j'', \{n_i\})$ and j < j'. Then,

- (1) $(j<)j' \le j''$, and
- (2) $m_i \ge m'_i \text{ for } i = 0, 1, \dots, j \text{ and } m'_i \ge n_i \text{ for } i = 0, 1, \dots, j'.$

This can be proved by using Lemmas 2 and 3. Lemmas 4 and 5 play a central role in our methods.

Lemma 6. Let $\{f_j\}$ be a Cauchy sequence in the ranked space (\mathcal{D}') . Then, for any $\phi \in (\mathcal{D})$, $\{f_j(\phi)\}$ is a Cauchy sequence in the complex number field.

Proof. By the assumption, there exists a canonical fundamental sequence $u=\{V_i=V(g_i\,;\,k_i,\,\{m_i^i\})\}$ such that, for every $i\in N$, a j_i can be found with the property that, if $j\geq j_i$, then $f_j\in V_i$. Since u is canonical, $i\leq k_i$. Let $\phi(\neq 0)\in (\mathcal{D})$. Then, ϕ belongs to some (\mathcal{D}_i) . For each $i\geq l$, consider the member m_i^t of $\{m_i^t\colon t=0,1,\cdots,k_i\}$ and the member m_i^t of $\{m_i^t\colon t=0,1,\cdots,k_i\}$. Then, by Lemma 5 and the fact that u is canonical, $m_i^t\geq m_i^t$ holds. Therefore, if we put $\psi=(1/\kappa)\phi$, where $\kappa=\|\phi\|_{m_i^t}$, then, $\|\psi\|_{m_i^t}\leq \|\psi\|_{m_i^t}=1$. On the other hand; for $j',j''\geq j_i,\|f_{j'}-f_{j''}\|_{m_i^t}^l<1/2^{k_i-1}$. Hence, $|f_{j'}(\phi)-f_{j''}(\phi)|<\kappa/2^{k_i-1}$.

Theorem 1. Let f_j , $f \in (\mathcal{D}')$ $(j=1,2,\cdots)$. Then, $\{f_j\}$ r-converges to f in the ranked space (\mathcal{D}') if and only if $\{f_j\}$ converges weakly to f.

Proof. The "if" part. For each $l \in N$, an $m_l \in N$ can be found with the property that, for each $i \in N$, there exists a k_i^l such that, if $j \ge k_i^l$, then $||f - f_j||_{m_l}^l < 1/2^i$ (see [1, p. 57]). Then, we can choose $\{m_i\}$ in such a way that $m_i \le m_{i+1}$. For such a $\{m_i\}$, define the sequence of preneighborhoods $\{V_i = V(f; i, \{m_0 \le \cdots \le m_i\})$. Then, the sequence is fundamental and $f_j \in V_i$ for every $j \ge \max(k_i^0, k_i^1, \cdots, k_i^i)$. The "only if" part is immediate from Lemma 6.

Theorem 2. The ranked space (\mathcal{D}') is complete.

Proof. For a fundamental sequence $\{V_i = V(g_i; k_i, \{m_j^i\})\}$, by Lemma 6 there exists $\lim g_i(\phi)$ for any $\phi \in (\mathcal{D})$. Set $g(\phi) = \lim g_i(\phi)$. Then $g \in (\mathcal{D}')$ (see [1, p. 68]). Moreover $g \in \bigcap V_i$.

Lemma 7. Consider a system of non-negative integers: $m_0 \le m_1 \le \cdots \le m_j$. Let, for some $\alpha > 0$,

$$M\subset\{f\in(\mathcal{D}'):||f||_{m_i}\leq \alpha \text{ for } i=0,1,\cdots,j\}.$$

Then, there exist $f_1, \dots, f_p \in M$ such that $M \subset \bigcup_{k=1}^p V(f_k; j, \{m_i+1\})$.

Proof. Let $i \in \{0, 1, \dots, j\}$ and set $\varepsilon = 1/(\alpha \cdot 2^{j+2})$. Then, by Lemma 1 there exist $\phi_1^i, \dots, \phi_{t_i}^i \in B_{m_i+1}^i$ such that $B_{m_i+1}^i \subset \bigcup_{s=1}^{t_i} \{\phi_s^i + S(i, m_i, \varepsilon)\}$. We put $t = \sum t_i$, and we make correspond to each $f \in M$ a point $\nu(f)$ of t-dimensional complex Euclidean space defined by

 $u(f) = (f(\phi_1^0), \dots, f(\phi_{t_0}^0), f(\phi_1^1), \dots, f(\phi_{t_1}^1), \dots, f(\phi_1^j), \dots, f(\phi_{t_j}^j)).$ Set $H = \{\nu(f) : f \in M\}$. Then, by the assumption, there exists a finite covering of H consisting of solid spheres $\{O_k : k = 1, \dots, p\}$ with $\operatorname{diam}(O_k) < 1/2^{j+2}$ and such that $O_k \cap H \neq \emptyset$. The desired assertion is true for a system $f_k \in M$ $(k=1,\dots,p)$ so chosen that $\nu(f_k) \in O_k$.

Theorem 3. The ranked space (\mathcal{D}') satisfies the r-second countability axiom.

Proof. Denote a system of non-negative integers: $m_0 \le m_1 \le \cdots \le m_j$ by τ . Corresponding to a τ and a $k \in N$, set $K_{\tau k} = \{f \in (\mathcal{D}') : \|f\|_{m_i}^i \le k+1 \text{ for } i=0,1,\cdots,j\}$. For each $K_{\tau k}$, by Lemma 7 there exist $f_{\tau ks} \in K_{\tau k}$ ($s=1,\cdots,p_{\tau k}$) such that $K_{\tau k} \subset \bigcup_{s=1}^{p_{\tau k}} V(f_{\tau ks};j,\{m_i+1\})$. The desired assertion is true for the countable collection consisting of all the preneighborhoods so chosen for all pairs τ,k .

Denote by \mathcal{B}_w the family of Borel sets in the weak topology of (\mathcal{D}') and by \mathcal{B}_R the family of r-Borel sets in the ranked space (\mathcal{D}') .

Lemma 8. Every set which is open in the weak topology of (\mathcal{D}') is also r-open in the ranked space (\mathcal{D}') .

Proof. Consider a weak neighborhood of $f \in (\mathcal{Q}')$: $W(f) = f + \{g \in (\mathcal{Q}'): |g(\phi_t)| < \varepsilon \text{ for } t = 1, \cdots, s\}$. For $r = f + g \in W(f)$, consider any canonical fundamental sequence $u = \{V_j = V(r; k_j, \{m_0^j \leq \cdots \leq m_{k_j}^j\})$ of center r. Take an $l \in N$ such that $(\mathcal{Q}_l) \ni \phi_1, \cdots, \phi_s$, and let j be the smallest integer such that $l \leq k_j$. Take a j' such that $k_{j'} \geq \max(l, (\lambda + 1)/\alpha)$, where $\lambda = \max_t \|\phi_t\|_{m_l^j}$ and $\alpha = \min_t (\varepsilon - |g(\phi_t)|)$. Then, we have $V_{j'} \subset W(f)$.

Lemma 9. Let $M = \{ f \in (\mathcal{D}') : ||f||_m^l \leq \alpha \}$. Then, $M \in \mathcal{B}_w$.

Proof. By Proposition 1, there exists a countable set $\{\phi_j\}$ which is dense in B_m^i . For each $k \in \{1, 2, \dots\}$, put $M_k = \{f \in (\mathcal{D}') : |f(\phi_j)| \le \alpha$ for $j = 1, \dots, k\}$. Then, $M = \bigcap_{k=1}^{\infty} M_k$.

From Lemmas 8 and 9 and Theorem 3, it follows that Theorem 4. \mathcal{B}_{R} coincides with \mathcal{B}_{w} .

References

- [1] I. M. Gel'fand and G. E. Shilov: Generalized Functions. vol. 2, Academic Press, New York-London (1968).
- [2] F. Hausdorff: Grundzüge der Mengenlehre. Veit, Leipzig (1914).
- [3] K. Kunugi: Sur les espaces complets et régulièrement complets. I. Proc. Japan Acad., 30, 553-556 (1954).
- [4] —: Sur la méthode des espaces rangés. II. Ibid., 42, 549-554 (1966).
- [5] S. Nakanishi: The method of ranked spaces proposed by Professor Kinjiro Kunugi. Math. Japon., 23, 291-323 (1978).
- [6] L. Schwartz: Théorie des distributions. I. Hermann, Paris (1950).