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64. The Basis Problem for Modular Forms on I'y(N)"

By Hiroaki HIJIKATA,*) Arnold PIZER,**)
and Tom SHEMANSKE***)

(Communicated by Kunihiko KODAIRA, M. J. A., June 12, 1980)

§0. Introduction. Let rO(N)={<‘§ g) e SLz(Z)ICEO(N)}and de-

note by S,(NV, v the space of cusp forms of weight £>2 and character
¥ on I'(N). M. Eichler ([5, p. 77]) formulated the “Basis Problem”,
roughly speaking to “construct explicitly” a basis of S,(N, ), as a gen-
eralization of a conjecture of Hecke ([6, Satz 53]) and presented a
solution in the case N is square free and =1 ([3], [4], [5]). The pur-
pose of this announcement is to sketch a “solution” for all weights
k=2, all levels N, and all characters v mod N.

Let SYN, ) denote the subspace of S,(N,+) generated by new-
forms. As it is easy to obtain a basis of S,(V, v) if one knows a basis
of Si(m, ) for m|N, we restrict our attention to Sy(NV, ). Eichler’s
result has been generalized ([10], [14]) to yield: If N is not a square,
S%N, 1) is spanned by certain explicit theta series attached to quater-
nary quadratic forms associated to orders in (p, co)-quaternion algebras
over @ (i. e. ramified at p and o), for various prime divisors p of N.
If N is a square, such a result cannot hold in general. Using calcula-
tions of Parry [12], A. O. L. Atkin was able to discover in the case
S3(13%,1) which newforms are not obtained from theta series and his
questions and ideas about this to one of the present authors led to the
“solution” for the case S%(p’M, 1), p an odd prime, ptM ([15]).

Our general solution which includes all the above as special cases
goes as follows. Call S,(N, ¢) a primitive neben space if cond (p)=N.
An eigenform for the Hecke operators T(n), (n, N)=1 in such a space
will be called a primitive nebenform. Our main result shows how to
explicitly decompose Si(N, ) as a direct sum of character twists of
primitive neben spaces and twists of spaces spanned by certain “theta
series” associated to (p, oo)~quaternion algebras. That this is a reason-
able solution to the basis problem follows from the result: For a new-
form f in SY(NV,+) corresponding to the representation 7=®r, of the
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adele group GL,, the following three conditions are equivalent: (1) f
is not representable by theta series of any (p, oo)-quaternion algebra ;
(2) =, belongs to the principal series for all /<o ; and (8) f is the twist
of some primitive nebenform. This result can be derived from Theo-
rem 16.1 of Jacquet-Langlands [11]. As in Eichler’s original proof,
most of our results are consequences of trace identities.

§1. Character twists of newforms. Let f=f(z)=>] a(n)x"e
SN, ), =e€*. If p is a primitive (Dirichlet) character we denote
by f* the twist of f by p, f*=> p(m)am)z™. f*e S (N, vy for some
N’. Welet SY(N, v)*={f*|feSi{N,)}, etc. Throughout this note p
denotes a prime, M any positive integer prime to p, w, 3, and 1 charac-
ters mod a power of p, and ¢ any character mod M. We define e(w),
ete. by cond (w)=p*“ and e(1)=0.

Theorem 1.1. If e(w)>7/2, then

Sk M, 0p) =D, Si(p* "M, wy’e)?
where the sum is over all primitive characters y mod p™°«,
Theorem 1.2. If e(w)<r/2 and e(x)+ e(w) <7, then
T(0™M, wX2$0)=S?c(pTM, w§0)1-
Theorem 1.3. If e(y)<r, then
S0 M, xp)=Si(0" M, 70)*.

Theorem 1.4 ([17]1 if wp=1). Letp=2and m=2. If e(w)<m

and A is any primitive character mod 2™, then
SURM, wp)= D SURM, wlig),

f=e(w2?)

Theorem 1.5. Let f=>, a(n)x" be a newform in Siy(N,). Let
q be a prime dividing N. Then a(q)=0 if and only if f=g* for some
newform g and some character p with q|cond (p).

Remarks. The results in this section should be compared with
those in Atkin-Li [1]. Also for brevity we have not stated results
which hold for the cases e(w)<r/2, e(y)=r/2 in Theorem 1.2, e(y)=r
in Theorem 1.3 and e(w)=m in Theorem 1.4. The above theorems are
proved by applying the trace formula of [9]. However with the ex-
ception of Theorem 1.4, they can also be derived by computing the
conductors of the corresponding representations.

§2. Theta series. Let B be a (p, oo)-quaternion algebra over @,
R an order of B, and M a positive integer prime to p. For a prime

¢,let R,=R®, Z,. We consider orders R of B such that (i) R= (f; . ?)
3 ¢,

for all ¢+#p and (ii) R, contains a subring isomorphic to the ring of
integers in some quadratic field extension L of @,. Such orders are
determined up to local isomorphisms by M, L, and the “level” at p
which is a power of p, say p°. In special cases such orders have been
studied in [2], [8], [13], and [15]. If ¢ is a character mod M and » a
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character mod a suitable power of p(<p*®), we can in a manner similar
to [5, p. 110] and [7, p. 586] (also see [18, §2]) associate to such or-
ders Brandt Matrices with character, say B,(n)=B,(n;R,o,¢)
=B,(n; L,p',0; M,p) for k=2 and n=0. In theory (and often in
practice, see [16]) the B,(n) can be explicitly computed.

Theorem 2.1. The entries 0,,(z) of the Brandt Matrixz series

(011(‘&'))= g} Bk(’n; L, P, M, SD)eZzinr

are modular forms of weight k and character wp on I'(N*) where
N=p'M. If k>2o0r ¢+1 or o is odd, the 6,,(z) are cusp forms.
The B,(n) for (n,pM)=1 can be simultaneously diagonalized say

* 07'

k>2or p#1or wis odd let O,(R, wp) =0(L, p*, 0 ; M, 0) ={0,)PD- - - DL,
where {4,> denotes the 1 dim. complex vector space spanned by 6,. In the
other cases some of the 6, may be eisenstein series and we let 0,(R, wp)
be the direct sum of the {6,> after deleting the eisenstein series. Let
H denote the Hecke algebra generated by all T'(n), (n, pM)=1. O4(R, wp)
is (via the action of the Brandt Matrices) an H-module and the 4, are
eigenforms for all T(n), (n,pM)=1. An equivalent non-constructive
but more conceptical and representation theoretic definition of 6,(R, wp)
is obtained by considering functions on the idele group of B as in § 2
of Shimizu [18]. As in [10, p. 19] and [7, p. 586] we can define the
subspace OY(R, wp) of “newforms” in 6,(R, wyp).

For the solution of the basis problem it suffices to consider v of
low conductor. Hence let ¢e=1 or any odd character mod p (4 if p=2).
Also we write A=B to mean A and B are isomorphic as H-modules.

Theorem 2.2 ([4] if s=0, M square free, and ep=1, [10] if s=0
and ep=1, [14] if e¢p=1). If s=e(e), then

Si(p* "M, ep) = O (Lo, p*** ', 65 M, 9)
where L, is the unramified quadratic extension of Q,.
Theorem 2.3. If p is odd and s=2, then

2850 M, ep) = OYL,, p*, ¢ ; M, 9)DD 28U(p* M, eA*p)?
A~

where L, is either ramified quadratic extension of Q, and the sum @,,.
is over all primitive characters mod p* modulo the equivalence A ~ex.

Theorem 2.4. Let p=2 and s=4 and fix a character 1 primitive
mod 2. Then 4842 M, Xp)*D28y(2* M, elp)' =0OY(L,, 2%, ¢; M, p)
DOYULg, 2%, e 5 M, ) where L,=Q,(v 2), Ly=Q,(v 6).

Remarks. Results similar to those above hold for S}(»*M, ep), p
odd (see [15]) and for Si(2°M,cp), s=2 or 4. Theorem 1.3 is valid
when e(y)=r if we replace = by = and this shows the = in Theorem

6, *
by conjugation by a matrix A. Let >} ABk(n)A'leZ"i"f=( o ) If
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2.3 is well defined.

§3. The basis problem. The idea is to use the theorems of §1
to reduce to the cases covered by the theorems of § 2. If  is a char-
acter mod N, let 4= [, » ¥, Where v, is a character mod ¢/, f=ord, (N).
We call ©4(L, p*,¢; M, ¢) or a subspace of it a p-theta space with char-
acter e.

Theorem 3.1. Any space of newforms Sy(N, ) with k=2 can be
explicitly decomposed into a direct sum of twists of primitive neben
spaces and twists of p-theta spaces with character ¢ where p ranges
over prime divisors of N and for each p,e=1 or any odd character
mod p (4 if p=2).

This follows from

Proposition 3.2. Letp|N. Sy(N, ) can be explicitly decomposed
wto a direct sum of twists of p-theta spaces with character ¢ and
twists of spaces Sy(N’, ') satisfying e(y,)=ord, (N’), ord,(N’')=ord,(N)
for £2p and [],ep ¥i= [Tewp Ve

We indicate the proof in most cases. Let N=p"M and »=w¢ with
o modp” and g mod M. If e(w)>r/2, apply Theorem 1.2. If r=2s+1
and e(w)<s if p#£2 or e(w)<s if p=2, then w=ey* for some y with e(y)
<s and ¢ as above. Now apply Theorems 1.2 and 2.2. If r=2s>4,
p+2, and e(w)<s, then w=¢y* and apply Theorems 1.2 and 2.3. Asa
final example consider the case p=2, *=2s>8, and e(w)<s—2. Then
w=c¢y’ with e(y) <s—1 and apply Theorems 1.2, 1.4 and 2.5.

Corollary 3.3. If e(y,)>(1/2) ord, (N) for all £|N, then

SN, ) =P Si(cond (), )

where the sum is over all p primitive mod (N /cond (y)).

In the case covered by Corollary 3.3 all newforms are twists of
primitive nebenforms. In all other cases in general there will be new-
forms that arrise as the twists of “theta series” associated to definite
quaternion algebras.

We should stress that the case of prime power level N=p* is the
essential case and in this case (M =¢=1), the results of §§1 and 2 are
complete in and of themselves. Generalizing to the case of non-prime
power level is easy. In the general case the p-theta spaces appearing
in our solution to the basis problem in § 3 are not unique, e.g. Si(p, q)
=0%(L,, p,1;q,1)=6%Ls q,1;,1). A better treatment involves con-
sidering arbitrary quaternion algebras, not just those ramified at a
single finite prime. However, these results are too complicated to
describe here. In fact most of our results can be generalized to arbi-
trary quaternion algebras over totally real number fields.

Our results can be viewed as a refinement of Theorem 16.1 of
Jacquet-Langlands [11] in the holomorphic case. In particular our
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results show how to construct from theta series attached to (p, o0)-
quaternion algebras all newforms corresponding to representations
7=Q®r, of GL, where r, is not in the principal series (i.e. is special or
supercuspidal) for at least one /<< oo.
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