100. A Remark Concerning the Extensions of Some Group C*-Algebras ## By Ryo ICHIHARA Department of Mathematical Sciences, Faculty of Engineering Science, Osaka University (Communicated by Kôsaku Yosida, M. J. A., Nov. 12, 1980) We investigate the extensions of the enveloping group C^* -algebras of discrete groups and show that to the free product of groups corresponds the direct sum of EXTs. As a consequence, it will be seen that the EXT of the enveloping group C^* -algebra of a free group F_n is Z^n , a result announced in L. G. Brown [2]. Let $G_k(k \in N)$ be groups, then we denote by G_1*G_2 (resp. $\prod_{k \in N}^* G_k$) the free product of G_1 and G_2 (resp. $\{G_k\}_{k \in N}$). If F is a group and φ_k is homomorphism of G_k into F, then there exists a unique homomorphism φ of $\prod^* G_k$ into F such that $\varphi \circ \iota_i = \varphi_i$ for all i, where ι_i is the canonical inclusion of G_i into $\prod^* G_k$. Throughout the paper, we assume that the groups are countable, $C^*(G)$ is then separable and has a unit, where $C^*(G)$ denotes the enveloping group C^* -algebra of G. H is a separable infinite dimensional Hilbert space, Q(H) is the Calkin algebra on H, and π is the quotient map from the total operator algebra B(H) onto Q(H). An extension τ of K(H), the algebra of compact operators, by a unital separable C^* -algebra A is a unital *-isomorphism of A into Q(H). EXT(A) is the family of all equivalence classes of extensions by A. Concerning these, we follow mainly the expositions in [1]. Let φ be a unital *-homomorphism of A into another unital separable C^* -algebra B. φ induces a homomorphism φ^* of EXT(B) into EXT(A) in the following way. For $[\tau] \in EXT(B)$, $\varphi^*[\tau] = [\tau \circ \varphi \oplus \tau_0]$, where τ_0 is the trivial extension of A, the extension which comes from a unital *-isomorphism of A into B(H). This is well-defined because of the equivalence of all trivial extensions. For short, we write EXT[G] in place of $EXT(C^*(G))$. Theorem. Let G_k be discrete groups $(k \in N)$. If $EXT[G_k]$ are groups for all k, then $EXT[\prod_{k\in N}^* G_k]$ is a group. Moreover $$EXT[\prod_{k\in\mathbb{N}}^* G_k] = \prod_{k\in\mathbb{N}} EXT[G_k].$$ Proof. If G is a discrete group, $C^*(G)$ is generated by $\{U_g : g \in G\}$, where U_g is the corresponding unitary to $g \in G$ in its universal representation. The canonical injection ι_i of G_i into $\prod^* G_i$ induces a *-homomorphism ι_{i*} of $C^*(G_i)$ into $C^*(\prod^* G_i)$. ι_{i*} also induces a homo- morphism ℓ_i^* of $EXT[\prod^* G_k]$ into $EXT[G_i]$. We define a homomorphism Φ of $EXT[\prod^* G_k]$ into $\prod EXT[G_k]$ by $$\Phi([\tau]) = \iota_1^*[\tau] \times \cdots \times \iota_n^*[\tau] \cdots$$ Surjection. For $[\tau_i] \in EXT[G_i]$ $(i \in N)$ there exists a homomorphism σ_i of G_i into the unitary group of Q(H) corresponding to τ_i . Let p_i be a homomorphism of $\prod^* G_k$ into G_i such that $p_i \circ \iota_i = \mathrm{id}_{\sigma_i}$, $p_i \circ \iota_j = e_{\sigma_i}$ for $i \neq j$, e_{σ_i} being the neutral element of G_i . Consider $Q(H) = Q(H \oplus H \oplus \cdots)$. We can then define a homomorphism σ of $\prod^* G_k$ into the unitary group of Q(H) by $\oplus \sigma_i$. σ induces a *-homomorphism τ' of $C^*(\prod^* G_k)$ into Q(H). Put now $\tau = \tau' \oplus \tau_0$, where τ_0 is a trivial extension of $C^*(\prod^* G_k)$. It is easy to see that $\iota_i^*[\tau] = [\tau_i]$. Injection. Because the range of Φ is a group, we have only to show that the kernel of Φ is trivial. If $\Phi[\tau]=0$, then $\iota_i^*[\tau]=0$. Note that $p_{i*} \circ \iota_{i*} = (p_i \circ \iota_i)_* = \mathrm{id}_{C^*(G_i)}$. ι_{i*} is then an injection, so $\tau \circ \iota_i^*$ is an extension. As it is trivial there is a unital *-homomorphism t_i of $C^*(G)$ into B(H) such that $t_i = \tau \circ \iota_{i*}$. We have a unitary representation s_i of G_i on H associated with t_i . By the universality of the free product, we have a unitary representation s of f with f with f into f and f in the there exists a *-homomorphism f of f into Q.E.D. Remark. Put $G_1=Z/2Z$, $G_2=Z/3Z$. Then $EXT[G_1*G_2]=0$ since $EXT[G_k]=0$. In general, when G is compact abelian, then EXT[G]=0 ([2]). Notice that the reduced group C^* -algebra of G_1*G_2 is the Choialgebra ([4]), and $C^*(G_1*G_2)$ is an example of a non-nuclear C^* -algebra whose EXT is reduced to zero. Corollary. For $n=1, 2 \cdots, \infty$, $EXT[F_n]=Z^n$, where F_n is the free group with n-generators. Remark. When n=2, this is L. G. Brown's example announced in [2]. It is a non-nuclear C^* -algebra whose EXT is a group. We remark also that here we have a proof that the $C^*(F_n)$ are not isomorphic for different n. If we use "direct sum" instead of "free product" in the statement of the theorem, the isomorphism does not always hold good. As a counter-example, we mention that $EXT[Z^3] = EXT(T^3) = Z^4$, where T^n is the n-dimensional torus and $EXT(T^3)$ is the extension group of the C^* -algebra $C(T^3)$ of all continuous functions on T^3 . The first isomorphism follows from $C^*(G) = C(\hat{G})$ for the abelian group G, where \hat{G} is a dual group of G. The second isomorphism is acquired by the following observations. First we cite two results from [3]. Theorem ([3, 7]). Let B and C be closed subsets of a compact metrizable space X with $X=B\cup C$ and $A=B\cap C$. Then there is a cyclic exact sequence of six terms, $$EXT(A) \longrightarrow EXT(B) \oplus EXT(C) \longrightarrow EXT(X)$$ $$\uparrow \qquad \qquad \downarrow$$ $$EXT(SX) \longleftarrow EXT(SB) \oplus EXT(SC) \longleftarrow EXT(SA)$$ where SX is suspension of X. Lemma ([3, 5.1]). If $p_1: X \times S^k \to X$, $p_2: X \times S^k \to S^k$ are projections, then there is a natural exact sequence $$0 \rightarrow EXT(S^kX) \rightarrow \ker p_{1*} \rightarrow EXT(S^k) \rightarrow 0.$$ Applying the theorem in the above with $(T^2, I \times T^1, I \times T^1)$ in place of (X, B, C), where I denotes the interval [0, 1], we have $$Z \oplus Z \longrightarrow Z \oplus Z \longrightarrow Z \oplus Z$$ $$\uparrow \qquad \qquad \downarrow$$ $$EXT(S(T^2))\longleftarrow 0 \longleftarrow Z$$ where $EXT(S(T \lor T)) = Z$. In fact, if we use the theorem for the triple $(S(T \lor T), S^2, S^2)$, we have an exact sequence $$egin{array}{cccc} 0 & \longrightarrow & EXT(S(T \lor T)) \\ \uparrow & & \downarrow \\ Z \oplus Z \longleftarrow & Z \oplus Z \longleftarrow & Z \end{array}$$ It follows that $EXT(S(T \lor T)) = Z$. Hence, $EXT(S(T^2)) = Z$. The lemma in the above implies, for $X = T^2$ k = 1, $$0 \longrightarrow EXT(S(T^2)) \longrightarrow \ker p_{1*} \xrightarrow{p_{2*}} EXT(T^1) \longrightarrow 0$$ hence ker $p_{1*}=Z\oplus Z$. We construct the following natural exact sequence $$0 \longrightarrow \ker p_{1*} \longrightarrow EXT(T^{3}) \xrightarrow{p_{1*}} EXT(T^{2}) \longrightarrow 0.$$ The exactness of the last part follows from $$p_{1*}h_* = (p_1h)_* = (\mathrm{id}_{T^2})_* = \mathrm{id}_{EXT(T^2)}$$ where $h: T^2 \rightarrow T^2 \times (*) \rightarrow T^2 \times T^1$ is the canonical injection. From this we see that $EXT(T^3) = Z^4$. Acknowledgement. The author would like to thank Prof. O. Takenouchi and Mr. Y. Katayama for their helpful comments and discussions. ## References - [1] W. B. Arveson: Notes on extension of C^* -algebras. Duke. Math. J., 144, 329-355 (1977). - [2] L. G. Brown: Extensions and the structure of C^* -algebras. Symposia Math., vol. XX, pp. 539-566, Academic Press (1976). - [3] L. G. Brown, R. G. Douglas, and P. A. Fillmore: Extensions of C*-algebras and K-homology. Ann. of Math., 105, 265-324 (1977). - [4] M. D. Choi: A simple C^* -algebra generated by two finite-order unitaries. Canad. J. Math., 31, 867-880 (1979). - [5] D. Voiculescu: A non-commutative Weyl-von Neumann theorem. Rev. Roum. Pures Appl., 21, 97-113 (1976).