100. A Remark Concerning the Extensions of Some Group C*-Algebras

By Ryo ICHIHARA

Department of Mathematical Sciences, Faculty of Engineering Science, Osaka University

(Communicated by Kôsaku Yosida, M. J. A., Nov. 12, 1980)

We investigate the extensions of the enveloping group C^* -algebras of discrete groups and show that to the free product of groups corresponds the direct sum of EXTs. As a consequence, it will be seen that the EXT of the enveloping group C^* -algebra of a free group F_n is Z^n , a result announced in L. G. Brown [2].

Let $G_k(k \in N)$ be groups, then we denote by G_1*G_2 (resp. $\prod_{k \in N}^* G_k$) the free product of G_1 and G_2 (resp. $\{G_k\}_{k \in N}$). If F is a group and φ_k is homomorphism of G_k into F, then there exists a unique homomorphism φ of $\prod^* G_k$ into F such that $\varphi \circ \iota_i = \varphi_i$ for all i, where ι_i is the canonical inclusion of G_i into $\prod^* G_k$. Throughout the paper, we assume that the groups are countable, $C^*(G)$ is then separable and has a unit, where $C^*(G)$ denotes the enveloping group C^* -algebra of G.

H is a separable infinite dimensional Hilbert space, Q(H) is the Calkin algebra on H, and π is the quotient map from the total operator algebra B(H) onto Q(H). An extension τ of K(H), the algebra of compact operators, by a unital separable C^* -algebra A is a unital *-isomorphism of A into Q(H). EXT(A) is the family of all equivalence classes of extensions by A. Concerning these, we follow mainly the expositions in [1].

Let φ be a unital *-homomorphism of A into another unital separable C^* -algebra B. φ induces a homomorphism φ^* of EXT(B) into EXT(A) in the following way. For $[\tau] \in EXT(B)$, $\varphi^*[\tau] = [\tau \circ \varphi \oplus \tau_0]$, where τ_0 is the trivial extension of A, the extension which comes from a unital *-isomorphism of A into B(H). This is well-defined because of the equivalence of all trivial extensions.

For short, we write EXT[G] in place of $EXT(C^*(G))$.

Theorem. Let G_k be discrete groups $(k \in N)$. If $EXT[G_k]$ are groups for all k, then $EXT[\prod_{k\in N}^* G_k]$ is a group. Moreover

$$EXT[\prod_{k\in\mathbb{N}}^* G_k] = \prod_{k\in\mathbb{N}} EXT[G_k].$$

Proof. If G is a discrete group, $C^*(G)$ is generated by $\{U_g : g \in G\}$, where U_g is the corresponding unitary to $g \in G$ in its universal representation. The canonical injection ι_i of G_i into $\prod^* G_i$ induces a *-homomorphism ι_{i*} of $C^*(G_i)$ into $C^*(\prod^* G_i)$. ι_{i*} also induces a homo-

morphism ℓ_i^* of $EXT[\prod^* G_k]$ into $EXT[G_i]$. We define a homomorphism Φ of $EXT[\prod^* G_k]$ into $\prod EXT[G_k]$ by

$$\Phi([\tau]) = \iota_1^*[\tau] \times \cdots \times \iota_n^*[\tau] \cdots$$

Surjection. For $[\tau_i] \in EXT[G_i]$ $(i \in N)$ there exists a homomorphism σ_i of G_i into the unitary group of Q(H) corresponding to τ_i . Let p_i be a homomorphism of $\prod^* G_k$ into G_i such that $p_i \circ \iota_i = \mathrm{id}_{\sigma_i}$, $p_i \circ \iota_j = e_{\sigma_i}$ for $i \neq j$, e_{σ_i} being the neutral element of G_i . Consider $Q(H) = Q(H \oplus H \oplus \cdots)$. We can then define a homomorphism σ of $\prod^* G_k$ into the unitary group of Q(H) by $\oplus \sigma_i$. σ induces a *-homomorphism τ' of $C^*(\prod^* G_k)$ into Q(H). Put now $\tau = \tau' \oplus \tau_0$, where τ_0 is a trivial extension of $C^*(\prod^* G_k)$. It is easy to see that $\iota_i^*[\tau] = [\tau_i]$.

Injection. Because the range of Φ is a group, we have only to show that the kernel of Φ is trivial. If $\Phi[\tau]=0$, then $\iota_i^*[\tau]=0$. Note that $p_{i*} \circ \iota_{i*} = (p_i \circ \iota_i)_* = \mathrm{id}_{C^*(G_i)}$. ι_{i*} is then an injection, so $\tau \circ \iota_i^*$ is an extension. As it is trivial there is a unital *-homomorphism t_i of $C^*(G)$ into B(H) such that $t_i = \tau \circ \iota_{i*}$. We have a unitary representation s_i of G_i on H associated with t_i . By the universality of the free product, we have a unitary representation s of f with f with f into f and f in the there exists a *-homomorphism f of f into f into

Q.E.D.

Remark. Put $G_1=Z/2Z$, $G_2=Z/3Z$. Then $EXT[G_1*G_2]=0$ since $EXT[G_k]=0$. In general, when G is compact abelian, then EXT[G]=0 ([2]). Notice that the reduced group C^* -algebra of G_1*G_2 is the Choialgebra ([4]), and $C^*(G_1*G_2)$ is an example of a non-nuclear C^* -algebra whose EXT is reduced to zero.

Corollary. For $n=1, 2 \cdots, \infty$, $EXT[F_n]=Z^n$, where F_n is the free group with n-generators.

Remark. When n=2, this is L. G. Brown's example announced in [2]. It is a non-nuclear C^* -algebra whose EXT is a group. We remark also that here we have a proof that the $C^*(F_n)$ are not isomorphic for different n.

If we use "direct sum" instead of "free product" in the statement of the theorem, the isomorphism does not always hold good. As a counter-example, we mention that $EXT[Z^3] = EXT(T^3) = Z^4$, where T^n is the n-dimensional torus and $EXT(T^3)$ is the extension group of the C^* -algebra $C(T^3)$ of all continuous functions on T^3 . The first isomorphism follows from $C^*(G) = C(\hat{G})$ for the abelian group G, where \hat{G} is a dual group of G. The second isomorphism is acquired by the following observations. First we cite two results from [3].

Theorem ([3, 7]). Let B and C be closed subsets of a compact

metrizable space X with $X=B\cup C$ and $A=B\cap C$. Then there is a cyclic exact sequence of six terms,

$$EXT(A) \longrightarrow EXT(B) \oplus EXT(C) \longrightarrow EXT(X)$$

$$\uparrow \qquad \qquad \downarrow$$

$$EXT(SX) \longleftarrow EXT(SB) \oplus EXT(SC) \longleftarrow EXT(SA)$$

where SX is suspension of X.

Lemma ([3, 5.1]). If $p_1: X \times S^k \to X$, $p_2: X \times S^k \to S^k$ are projections, then there is a natural exact sequence

$$0 \rightarrow EXT(S^kX) \rightarrow \ker p_{1*} \rightarrow EXT(S^k) \rightarrow 0.$$

Applying the theorem in the above with $(T^2, I \times T^1, I \times T^1)$ in place of (X, B, C), where I denotes the interval [0, 1], we have

$$Z \oplus Z \longrightarrow Z \oplus Z \longrightarrow Z \oplus Z$$

$$\uparrow \qquad \qquad \downarrow$$

$$EXT(S(T^2))\longleftarrow 0 \longleftarrow Z$$

where $EXT(S(T \lor T)) = Z$. In fact, if we use the theorem for the triple $(S(T \lor T), S^2, S^2)$, we have an exact sequence

$$egin{array}{cccc} 0 & \longrightarrow & EXT(S(T \lor T)) \\ \uparrow & & \downarrow \\ Z \oplus Z \longleftarrow & Z \oplus Z \longleftarrow & Z \end{array}$$

It follows that $EXT(S(T \lor T)) = Z$. Hence, $EXT(S(T^2)) = Z$. The lemma in the above implies, for $X = T^2$ k = 1,

$$0 \longrightarrow EXT(S(T^2)) \longrightarrow \ker p_{1*} \xrightarrow{p_{2*}} EXT(T^1) \longrightarrow 0$$

hence ker $p_{1*}=Z\oplus Z$.

We construct the following natural exact sequence

$$0 \longrightarrow \ker p_{1*} \longrightarrow EXT(T^{3}) \xrightarrow{p_{1*}} EXT(T^{2}) \longrightarrow 0.$$

The exactness of the last part follows from

$$p_{1*}h_* = (p_1h)_* = (\mathrm{id}_{T^2})_* = \mathrm{id}_{EXT(T^2)}$$

where $h: T^2 \rightarrow T^2 \times (*) \rightarrow T^2 \times T^1$ is the canonical injection.

From this we see that $EXT(T^3) = Z^4$.

Acknowledgement. The author would like to thank Prof. O. Takenouchi and Mr. Y. Katayama for their helpful comments and discussions.

References

- [1] W. B. Arveson: Notes on extension of C^* -algebras. Duke. Math. J., 144, 329-355 (1977).
- [2] L. G. Brown: Extensions and the structure of C^* -algebras. Symposia Math., vol. XX, pp. 539-566, Academic Press (1976).
- [3] L. G. Brown, R. G. Douglas, and P. A. Fillmore: Extensions of C*-algebras and K-homology. Ann. of Math., 105, 265-324 (1977).

- [4] M. D. Choi: A simple C^* -algebra generated by two finite-order unitaries. Canad. J. Math., 31, 867-880 (1979).
- [5] D. Voiculescu: A non-commutative Weyl-von Neumann theorem. Rev. Roum. Pures Appl., 21, 97-113 (1976).