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We investigate the extensions of the enveloping group C*-algebras
of discrete groups and show that to the free product of groups cor-
responds the direct sum of FXTs. As a consequence, it will be seen
that the EXT of the enveloping group C*-algebra of a free group F',
is Z*, a result announced in L. G. Brown [2].

Let G.(k € N) be groups, then we denote by GG, (resp. [[k~ G
the free product of G, and G, (resp. {G,}icy). If F is a group and o,
is homomorphism of G, into F, then there exists a unique homomor-
phism ¢ of [[* G, into F' such that ¢o¢,=¢, for all i, where ¢, is the
canonical inclusion of G, into [[* G,. Throughout the paper, we as-
sume that the groups are countable, C*(G) is then separable and has a
unit, where C*(G) denotes the enveloping group C*-algebra of G.

H is a separable infinite dimensional Hilbert space, Q(H) is the
Calkin algebra on H, and r is the quotient map from the total operator
algebra B(H) onto Q(H). An extension r of K(H), the algebra of com-
pact operators, by a unital separable C*-algebra A is a unital *-isomor-
phism of A into Q(H). EXT(A) is the family of all equivalence classes
of extensions by A. Concerning these, we follow mainly the exposi-
tions in [1].

Let ¢ be a unital *-homomorphism of A into another unital sepa-
rable C*-algebra B. ¢ induces a homomorphism ¢* of EXT(B) into
EXT(A) in the following way. For [c]e EXT(B), ¢'lc]l=I[r0 @],
where 7, is the trivial extension of A, the extension which comes from
a unital *-isomorphism of A into B(H). This is well-defined because
of the equivalence of all trivial extensions.

For short, we write EXT[G] in place of EXT(C*(G)).

Theorem. Let G, be discrete groups (ke N). If EXT[G,] are
groups for all k, then EXTI[[[#.x G.] is a group. Moreover

EXTI[[]#x Gil=Tlrew EXTIG,].

Proof. If G is a discrete group, C*(G) is generated by {U,; g € G},
where U, is the corresponding unitary to g € G in its universal repre-
sentation. The canonical injection ¢, of G, into [[* G, induces a *-
homomorphism ¢,, of C*(G, into C*([][* G}). ¢, also induces a homo-



430 R. ICHIHARA [Vol. 56(A),

morphism ¢ of EXT[[[* G,] into EXT[G,]. We define a homomorphism
@ of EXT[[]* G,] into [[ EXTI[G.] by
O([D=2alc1%x - xdle]---.

Surjection. For [r,] e EXT[G,] (i€ N) there exists a homomor-
phism ¢, of G, into the unitary group of Q(H) corresponding to z,. Let
p; be a homomorphism of [[* G, into G, such that p,o¢,=id,,, ;¢
=egq, for i#7, e;, being the neutral element of G,. Consider Q(H)
=QH®H®---). We can then define a homomorphism ¢ of [[* G,
into the unitary group of Q(H) by @os,. ¢ induces a *-homomorphism
7/ of C*([]* G,) into Q(H). Put now r=17'"Dr,, where 7, is a trivial ex-
tension of C*([]* G,). It is easy to see that c[c]=I[c,].

Injection. Because the range of @ is a group, we have only to
show that the kernel of @ is trivial. If @[c]=0, then ([r]=0. Note
that pyoc=(,0¢),=1dq,. ¢4 is then an injection, so r o is an ex-
tension. As it is trivial there is a unital *~-homomorphism ¢, of C*(G)
into B(H) such that t,=ro0¢,. We have a unitary representation s, of
G, on H associated with ¢,. By the universality of the free product,
we have a unitary representation s of [[* G, with so¢,=s, for all 4.
Then there exists a *-homomorphism ¢ of C*([]* G,) into B(H) associ-
ated with s. ¢ equals zof on the generators {U,: g € ¢(Gy)} of
C*([T* Gx). By continuity z-t=<, i.e. r is a trivial extension.

Q.E.D.

Remark. Put G,=Z/2Z, G,=Z/3Z. Then EXT[G,xG,]=0 since
EXT[G,]=0. Ingeneral, when G is compact abelian, then EXT[G]=0
([2]). Notice that the reduced group C*-algebra of G,xG, is the Choi-
algebra ([4]), and C*(G,xG,) is an example of a non-nuclear C*-algebra
whose EXT is reduced to zero.

Corollary. Forn=1,2---,c0, EXT[F ,1=2", where F, is the free
group with n-generators.

Remark. When n=2, this is L. G. Brown’s example announced
in [2]. It is a non-nuclear C*-algebra whose EXT is a group. We
remark also that here we have a proof that the C*(F',) are not isomor-
phic for different .

If we use “direct sum” instead of ‘“free product” in the statement
of the theorem, the isomorphism does not always hold good. As a
counter-example, we mention that EXT[Z}]=EXT(T%)=2*, where T"
is the n-dimensional torus and EXT(T?) is the extension group of the
C*-algebra C(T?) of all continuous functions on 7°. The first isomor-
phism follows from C*(@)=C(G) for the abelian group G, where G is
a dual group of G. The second isomorphism is acquired by the follow-
ing observations. First we cite two results from [3].

Theorem ([3, 7). Let B and C be closed subsets of a compact
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metrizable space X with X=BUC and A=BNC. Then there is a
cyclic exact sequence of six terms,

EXT(A) —> EXTB)@EXT(CC) —> EXT(X)

EXT(SX)«—EXT(SBY®EXT(SC)«—EXT(SA)

where SX is suspension of X.

Lemma ([3, 5.11). If p,: XxXS*—>X, p,: X xS*-S* are projec-
tions, then there is a natural exact sequence

0—-EXT(S*X)—ker p,.—EXT(S*)—0.

Applying the theorem in the above with (7%, I X T', I X T") in place

of (X, B, C), where I denotes the interval [0, 1], we have
Z®Z —Z®Z—>ZDZ

|

EXT(S(TH)«— 0 «— Z
where EXT(S(T\V/T))=Z. In fact, if we use the theorem for the triple
STV 1T),8%, 8%, we have an exact sequence

0 — 0 —EXTS(TVD)

ZDZ«——ZPZ<«— VA
It follows that EXT(S(T\VVT))=Z. Hence, EXT(S(T))=Z. The
lemma in the above implies, for X=T* k=1,
0—>EXT(S(TYH) ker p,« o EXT(TH—>0
hence ker p.=ZPZ.
We construct the following natural exact sequence
0—ker p,—>EX T(TS)WEX T(T»—>0.

The exactness of the last part follows from
p1*h* = (p1h)* = (idm)* =idgrrcr
where h: T?*—T?x (x)—»>T?x T is the canonical injection.
From this we see that EXT(T?%) =2".
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