13. Note on Cyclic Galois Extensions

By Kozo SUGANO
Department of Mathematics, Hokkaido University
(Communicated by Shokichi IYANAGA, M. J. A., Jan. 12, 1981)

Introduction. As a generalization of central separable algebras, the notion of H-separable extension was introduced in [3]. Especially in the case where B is a commutative ring and A is a faithful B-algebra, A is an H-separable Galois extension of B if and only if A is central Galois extension of B. But in the case where B is non-commutative, there are some properties which hold in H-separable extensions of B but do not hold in central Galois extensions. Especially by Theorem 11 [2] there is no central cyclic Galois extension, while we could find some examples of H-separable cyclic Galois extensions in [11]. The aim of this paper is to show that if A is an H-separable Galois extension of B relative to a cyclic group $G = \langle \sigma \rangle$, then the centralizer of B in A is equal to the center of B (Theorem 1). We will also show that if A is an H-separable extension of B and the center of A is semi-local, then all elements of Aut $A \cap B$ 0 are inner automorphisms (Theorem 2).

Definitions and symbols. Throughout this paper A will be a ring with the identity 1, B a subring of A which contains 1 of A and C and C' the centers of A and B, respectively. For any subset X of A, any ring automorphism σ of A and any A-A-module M, we will set respectively

$$V_A(X) = \{a \in A \mid ax = xa \text{ for all } x \text{ in } X\}$$

$$J_\sigma = \{a \in A \mid xa = a\sigma(x) \text{ for all } x \text{ in } A\}$$

$$M^A = \{m \in M \mid ma = am \text{ for all } a \in A\}.$$

Furthermore, by A_{σ} we denote an A-A-module such that $A_{\sigma} = A$ as left A-module and $ax = a\sigma(x)$ for $a \in A_{\sigma}$ and $x \in A$ as right A-module. Then we see $J_{\sigma} = (A_{\sigma})^A$, $V_A(B) = A^B = (A_{\sigma})^B$, $C = V_A(A)$ and $C' = V_B(B)$. Especially we will denote $D = V_A(B)$. A is an H-separable extension of B if and only if $A \otimes_B A$ is isomorphic to a direct summand of some $(A \oplus A \oplus \cdots \oplus A)$ (finite direct sum) as A-A-module. This condition is equivalent to the condition that for any A-A-module M $D \otimes_C M^A \cong M^B$ by $d \otimes m \to dm$ for $d \in D$ and $m \in M^A$ (see Theorem 1.2 [9]). Hence if A is an H-separable extension of B, $D = (A_{\sigma})^B \cong D \otimes_C (A_{\sigma})^A = D \otimes_C J_{\sigma}$. Thus J_{σ} is rank 1 C-projective, since D is C-finitely generated projective by Theorem 1.1 [3], and $DJ_{\sigma} = J_{\sigma}D = D$ for each $\sigma \in \operatorname{Aut}(A|B)$, where $\operatorname{Aut}(A|B)$ denotes the group of all automorphisms of A which fix all elements of B. Furthermore, G will always stand for a finite group of

ring automorphisms of A, and for any subgroup K of G we will set $A^K = \{a \in A \mid \sigma(a) = a \text{ for all } \sigma \text{ in } K\}.$

A is a Galois extension of B relative to G if and only if $B=A^{G}$ and there exist x_{i} , y_{i} $(i=1, 2, \dots, m)$ in A such that $\sum x_{i}\sigma(y_{i})=\delta_{1\sigma}$ (Kronecker delta) for each $\sigma \in G$ (see [2] and [6]). Note that if A is a Galois extension of B relative to G, $D=\sum_{\sigma\in G}^{\Theta}J_{\sigma}$ by Proposition 1 [6].

Cyclic Galois extensions. The next lemma may already be known. But the author wishes to state here for completeness.

Lemma 1. Let A be a Galois extension of B relative to G and R a subring of $C \cap B$. Then for any multiplicative subset S of R, A_s $(=A \otimes_{\mathbb{R}} R_s)$ is a Galois extension of B_s $(=B \otimes_{\mathbb{R}} R_s)$ relative to G.

Proof. Let φ be the natural homomorphism of A to A_s and \Re the kernel of φ , namely, $\varphi(x) = x \otimes 1$ for $x \in A$ and $\Re = \{a \in A \mid as = 0 \text{ for some } s \text{ in } S\}$. Now it is obvious that for any $\sigma \in G$ we can obtain an automorphism $\bar{\sigma}$ of A_s by $\bar{\sigma}(x \otimes 1/s) = \sigma(x) \otimes 1/s$ for $x \in A$ and $s \in S$.

On the other hand there exist x_i, y_i $(i=1, 2, \cdots, m)$ in A such that $\Sigma x_i \sigma(y_i) = \delta_{1\sigma}$, since A is a Galois extension of B relative to G. Suppose $\overline{\sigma} = 1_{As}$ for some $\sigma \neq 1$ in G. Then for any $x \in A$, $\sigma(x) - x \in \mathfrak{N}$. Hence $1 = \Sigma x_i y_i - \Sigma x_i \sigma(y_i) = \Sigma x_i (y_i - \sigma(y_i)) \in \mathfrak{N}$, a contradiction. Therefore, we see that G acts on A_s faithfully. Next we will show $(A_s)^G = B_s$. Let $x \otimes 1/t \in (A_s)^G$ with $x \in A$ and $t \in S$. Then for each $\sigma \in G$, $(\sigma(x) - x) \otimes 1 = 0$, and there exists $s_\sigma \in S$ such that $(\sigma(x) - x)s_\sigma = 0$. Let $s = \prod s_\sigma$. Then $(\sigma(x) - x)s = \sigma(xs) - xs = 0$ for all $\sigma \in G$. Hence $xs = r \in B = A^G$, and we have $x \otimes 1/t = r \otimes 1/st \in B_s$. Thus $(A_s)^G \subseteq B_s \cdot (A_s)^G \supseteq B_s$ is obvious. Finally it is clear that $x_i \otimes 1$, $y_i \otimes 1$ $(i = 1, 2, \cdots, m)$ satisfy the condition of Galois extension. Thus A_s is a Galois extension of B_s relative to G.

Let us say that A is an inner Galois extension of B relative to G if A is a Galois extension of B relative to a Group G all of whose elements are inner automorphisms. Note that every inner Galois extension is an H-separable extension by Theorem 3 [10].

Proposition 1. Let A be an H-separable Galois extension of B relative to G. Then for any prime ideal $\mathfrak p$ of C, $A_{\mathfrak p}$ is an inner Galois extension of $B_{\mathfrak p}$ relative to G.

Proof. B is a C-algebra, since $B=V_A(V_A(B))\supset C$ by Proposition 3 (1) [10]. $A_{\mathfrak{p}}$ is a Galois extension of $B_{\mathfrak{p}}$ relative to G by Lemma 1 and also an H-separable extension of $B_{\mathfrak{p}}$ by Proposition 1.7 [9]. Let \overline{C} be the center of $A_{\mathfrak{p}}$ and $\overline{D}=V_{A_{\mathfrak{p}}}(B_{\mathfrak{p}})$. Regarding $A_{\mathfrak{p}}$ as A-A-module, we have $\overline{C}=(A_{\mathfrak{p}})^{A_{\mathfrak{p}}}=(A_{\mathfrak{p}})^{A}$ and $\overline{D}=(A_{\mathfrak{p}})^{B_{\mathfrak{p}}}=(A_{\mathfrak{p}})^{B}$. Then since A is H-separable over B, we have $\overline{D}=(A_{\mathfrak{p}})^{B}\cong D\otimes_{c}(A_{\mathfrak{p}})^{A}=D\otimes_{c}\overline{C}$. Now let $J_{\mathfrak{p}}$ be as above and set $\overline{J}_{\mathfrak{p}}=\{\alpha\in A_{\mathfrak{p}}|\beta\alpha=\alpha\sigma(\beta) \text{ for all }\beta \text{ in }A_{\mathfrak{p}}\}$. Then $\overline{D}=\Sigma_{\mathfrak{p}\in G}^{\oplus}\overline{J}_{\mathfrak{p}}$ and $D=\Sigma_{\mathfrak{p}\in G}^{\oplus}J_{\mathfrak{p}}$ by Proposition 1 [6]. Hence we have $\Sigma^{\oplus}J_{\mathfrak{p}}\otimes_{c}\overline{C}=\Sigma^{\oplus}\overline{J}_{\mathfrak{p}}$. But $\varphi(J_{\mathfrak{p}})\overline{C}\subset \overline{J}_{\mathfrak{p}}$ for each $\sigma\in G$, where φ is the natural map of A to $A_{\mathfrak{p}}$.

Therefore $J_{\sigma} \otimes_{c} \overline{C} \cong \overline{J}_{\sigma}$ for each $\sigma \in G$. Then since \overline{C} is a $C_{\mathfrak{p}}$ -algebra, and J_{σ} is rank 1 C-projective, $\overline{J}_{\sigma} \cong J_{\sigma} \otimes_{c} \overline{C} \cong J_{\sigma} \otimes_{c} C_{\mathfrak{p}} \otimes_{c_{\mathfrak{p}}} \overline{C} \cong C_{\mathfrak{p}} \otimes_{c_{\mathfrak{p}}} \overline{C} \cong \overline{C}$. Hence $\overline{J}_{\sigma} = \gamma \overline{C}$ for some $\gamma \in \overline{J}_{\sigma}$. Then since $A_{\mathfrak{p}}$ is H-separable over $B_{\mathfrak{p}}$, $\overline{D} = \overline{D} \overline{J}_{\sigma} = \overline{J}_{\sigma} \overline{D} = \gamma \overline{D} = \overline{D} \gamma$. Hence γ is a unit, and we have $\sigma(\alpha) = \overline{\gamma}^{1} \alpha \gamma$ for all $\alpha \in A_{\mathfrak{p}}$.

Lemma 2. Let σ be an inner automorphism of A of a finite order, and suppose that A is a Galois extension of B relative to $G = \langle \sigma \rangle$. Then we have $V_A(B) = C'$ and $V_A(C') = B$.

Proof. There exists a unit u in D such that $\sigma(x)=u^{-1}xu$ for all $x\in A$. Then $J_{\sigma^i}=Cu^i$ for $i=1,\,2,\,\cdots,\,n-1$, where n is the order of σ . Since $\sigma^j(cu^i)=u^{-j}cu^iu^j=cu^i$ for each i, we have $\sigma^j|J_{\sigma^i}=$ identity. Thus we have $D=\sum^{\oplus}J_{\sigma^i}\subset A^a=B$, which means that $D=V_B(B)=C'$. Finally since A is H-separable over B by Theorem 3 [10], we have $B=V_A(V_A(B))=V_A(C')$ by Proposition 3 [10].

Theorem 1. Let A be an H-separable Galois extension of B relative to a cyclic group $G = \langle \sigma \rangle$. Then we have $V_A(B) = C'$ and $V_A(C') = B$. Furthermore, Aut (A|B) is Abelian.

Proof. Let m be any maximal ideal of C. Then by Proposition 1, A_m is an inner Galois extension of B_m relative to $G = \langle \sigma \rangle$. Hence $D_m \subseteq V_{A_m}(B_m) \subseteq B_m$ by Lemma 2. Thus $(D+B)_m = B_m$ for all maximal ideal m of C. Then D+B=B and $D \subseteq B$. Hence D=C', and $V_A(C') = V_A(V_A(B)) = B$. Finally since Aut $(A|B) \subseteq \text{Hom } (_BA_B, _BA_B) \cong C' \otimes_c C'$ by Proposition 3.1 [4], Aut (A|B) is Abelian.

Automorphisms in *H*-separable extensions. First observe the following facts. If A is H-separable over B, D is C-finitely generated projective, and consequently ${}_{c}C < \oplus_{c}D$. Then for any $\sigma \in \operatorname{Aut}(A|B)$, we have $J_{\sigma}J_{\sigma^{-1}} = J_{\sigma^{-1}}J_{\sigma} = C$, because $DJ_{\sigma} = D$, $DJ_{\sigma}J_{\sigma^{-1}} = DJ_{\sigma^{-1}} = D$ and $J_{\sigma}J_{\sigma^{-1}} = (DJ_{\sigma}J_{\sigma^{-1}}) \cap C = D \cap C = C$. Thus J_{σ} is rank 1 C-projective.

Theorem 2. Let A be an H-separable extension of B. Then all elements of $\operatorname{Aut}(A|B)$ are inner automorphisms, if C is a semi-local ring.

Proof. Let σ be any element of Aut (A|B), and $\mathfrak{m}_1, \mathfrak{m}_2, \cdots, \mathfrak{m}_r$ the set of all maximal ideals of C. Now we can follow the same lines as the proof of Lemma 1 [6]. Since $J_{\sigma}J_{\sigma^{-1}}=C$, we have $\mathfrak{m}_iJ_{\sigma}\not\supset \mathfrak{m}_1\cdots \mathfrak{m}_{i-1}$ $\mathfrak{m}_{i+1}\cdots \mathfrak{m}_rJ_{\sigma}$ for each i $(1\leq i\leq r)$. Hence there exists a_i in $\mathfrak{m}_1\cdots \mathfrak{m}_{i-1}$ $\mathfrak{m}_{i+1}\cdots \mathfrak{m}_rJ_{\sigma}$ such that $a_i\in \mathfrak{m}_iJ_{\sigma}$. Set $a=\Sigma a_i$. Then, $a\in J_{\sigma}$ and $a\in \mathfrak{m}_iJ_{\sigma}$ for each i. But J_{σ} is rank 1 C-projective. Hence $[J_{\sigma}/\mathfrak{m}_iJ_{\sigma}:C/\mathfrak{m}_i]=1$, and $J_{\sigma}/\mathfrak{m}_iJ_{\sigma}=(a+\mathfrak{m}_iJ_{\sigma})C/\mathfrak{m}_i$. Thus we have $J_{\sigma}=aC+\mathfrak{m}_iJ_{\sigma}$ for each maximal ideal \mathfrak{m}_i of C. Hence $J_{\sigma}=aC$ by Nakayama's Lemma. Then Da=aD=D $(=DJ_{\sigma})$, and a is a unit. Hence σ is inner.

Corollary 1. Let A be an H-separable extension of B such that $V_A(V_A(B))=B$. Then if C' is a semi-local ring, all elements of Aut

(A|B) are inner automorphisms.

Proof. Let J be the Jacobson radical of C'. Then C'/J is semi-simple artinean, and $C' = V_B(B) = D \cap B = V_D(D) \supset C$. Hence D is finitely generated as C'-module. Then D/JD is artinean, and we see that JD is contained in every maximal left ideal of D by Nakayama's Lemma. Hence D is also a semi-local ring. But C is a C-direct summand of D. Hence $aD \cap C = a$ for any ideal a of a. This implies that every proper ideal of a is contained in a maximal left ideal of a. If a and a are any two maximal ideals of a which are contained in a maximal left ideal a of a, then a is a semi-local ring. Hence a is a semi-local ring.

References

- [1] F. Demeyer and E. Ingraham: Separable algebras over commutative rings. Lect. notes in Math., vol. 181, Springer (1971).
- [2] F. Demeyer: Some note on the general Galois theory of rings. Osaka J. Math., 1, 117-127 (1964).
- [3] K. Hirata: Some types of separable extensions of rings. Nagoya Math. J., 33, 107-115 (1968).
- [4] —: Separable extensions and centralizers of rings, ibid., 35, 31-45 (1969).
- [5] —: Some remarks on separable extensions (to appear in Hokkaido Math. J.).
- [6] T. Kanzaki: On Galois algebras over a commutative ring. Osaka J. Math., 2, 309-317 (1965).
- [7] —: Note on abelian Galois algebras over a commutative ring. ibid., 3, 1-6 (1966).
- [8] K. Kishimoto: Note on cyclic extensions of rings. J. Fac. Sci. Shinshu Univ., 5, 29-32 (1970).
- [9] K. Sugano: Note on semisimple extensions and separable extensions. Osaka J. Math., 4, 265-270 (1967).
- [10] —: Note on automorphisms in separable extensions (to appear in Hokkaido Math. J.).
- [11] —: On a special type of Galois extensions (to appear in Hokkaido Math. J.).
- [12] —: On Automorphisms in separable extensions of rings. Proc. 13th symposium of ring theory, 1980, Okayama, Japan (1980).