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Introduction. This is a continuation of our paper [2] which will
be referred to as (I) in this paper.” Let k be a finite field with g ele-
ments: k=F,, x be a non-trivial character of the multiplicative group
k> (extended by 3(0)=0) and f be a function k—k. We shall put

S,()= % x(f(@)).

Consider the polynomial

0.1) f@)=x2"+Ax+B, A,Bek, m=3.
Denote by 4(A4, B) the discriminant of f(x), i.e.
0.2) 44, By =(—=1)" ' (m—-1)""A™+m™B™"*,

We assume that (¢, m)=(q, m—1)=1. The purpose of the paper is to
prove the following

Theorem. Let d be an integer=2 such that (q, d)=(d, m)=(d,
m—2)=1 and let y be a non-trivial character of k* of exponent d.
Then, there is a polynomial f(x)=2x2™+Ax+B with A+0, B+0,
A(A, B)=+0 such that
0.3) IS, |<kv @,
where k=+3 if m=3 and k=+2(m—1) if m=4.

Remark 1. By the well-known theorem® we know that
0.4) 1S,(I<(m—1v'T
for any polynomial f of degree m with (d, m)=1.

Remark 2. When d=2, m can be any odd integer >3 and since
there is only one quadratic character y we have the relation

N= q +S f(X)’
where N denotes the number of solutions (x, ¥) € k* of the equation
(0.5) yr=x™+Ax-+B.

Therefore, our Theorem means that among hyperelliptic curves of type
(0.5) with A0, B+0, 4(4, B)+0, there is a curve which satisfies the
inequality

(0.6) IN—q|<ev q@

where k=+3 if m=3 and r=+2(m—1) if m>=5 (m:odd). A
similar remark can be made for the case d=3.

1) For example, we mean by (1.2.3) the item (2.3) in (I).
2) See Theorem 2C on p. 43 of [1].
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§1. Method of the proof. We first remind the reader the
equality
(I.1.11 () =0q""(q—Do(,
where Y is a vector space over k of dimension r, F' is a mapping from
a finite set X into Y, y is a non-trivial character of %x* and o:(x), px(x)
are invariants defined as follows. First, for a function f: X—k, we
write

a.1 S;(0 =w§f x(S(@)).

Next, the mapping F'; X—Y induces a function F',: X—k by F,=A1F
for each linear form 1€ Y*. We then put

(1.2) or(D= 2, ISr (0.

Now, for non-zero vectors u, v € Y, we write u||v when they are pro-
portional to each other, i.e. when there is an a € k* such that v=au.
In this situation, we write a=v:u. Finally, we put

1.3) o= 3 A(F(@): F),
where
1.4) P={(x, ) ek F(z)#0, F(y)#0, F(x)nF(y)}.

Since we consider a fixed character y of exponent d, we often write
S;s 05, pr Without y.

To prove our Theorem, we first consider the case where X=Fk, Y
=k* and F(x)=(a™, x, 1). Since F(2)|F(y) if and only if =y, we have

1.5 or=4q,
and, by (I.1.11), we get
(1.6 or=q%(¢—1).

Identifying the linear form 1€ Y* with 2=(a, 8, 1) € k* we can write
F(x)=ax™+ pxr+y. We shall consider in Y* the following five subsets :
1 ={'2=(0(a /9’ O); o, ﬁe k},
Ay ={A=(a,0,7); &, 7€ k},
Ay ={A=(2,0,0); a ek},
AIV ={2=(O’ ,3’ T); ﬂ’ 7€ kx},
Ay ={A=(, B, 1) @, B, r € k*}.

If we put

.7 a,= 2, ISkl I<j<V,
i€y

we have

(1.8) Op=01+01—0m+0w+0y.

Among these terms, we have oy;;=7 e | D ser x(@z™)['=0 since y is non-

trivial and (d, m)=1, and orw=1>",»cwx2 | D zer x(BL+)[*=0 since g0.
Therefore (1.8) becomes

1.9 Op=01+t0n+0ay.
In the next two sections, we shall compute the first two terms of (1.9)
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explicitly.
§2. Computation of ¢;. To find
2.1 o= 2. |2 xlaz™+p2)f,

(a,) EK2 TEK

we use the equality (I.1.11) with X=Fk, Y=F* and F(zx)=(™, ). We
see easily that
(2.2) F|Fyey=az, a"'=1, x,yeck”.
Put & =(m—1, ¢g—1) and 0 =g~/ where g is a generator of the cyclic
group k*. Then we have the disjoint union
2.3) P=P,UP,U.---UP;_, with

P,={(z, o'x), x € k*}, 0o —1.
From this we have

PF=(x§ePX(F(iE): F(y) =‘:Z;::;; x(w—i)=(q_1)a;zj) 1079,

and so
_[d(g—=D), if y(@=1,
@4 br "'{ 0, if y(@)=~1.
Hence we have
@5 s {TAa=D A=,
0, if y(w)+#1.
§3. Computation of oz« To find

3.1 on= > wax™ 1) 2,

(a,y)EX2 | xEL

we use the equality (I.1.11) with X=Fk, Y=k? and F(z)=(™, 1). We
see that
(3.2) F|Fyey =", x, yek.
Hence, when x+0, there are ¢” y’s with ¢"=(m, ¢—1). If we put 5
=g~v" then we have the disjoint union
3.3) P={0,0}UP,UP,U---UP,._, with

P,={(z, p'x), x € k*}, 0<i<d” —1.
Since x(F'(x) : F(y))=1 for (z, y) € P, we have

3.4 pr=14(q—1)8"
and hence
(3.5) ou=q(¢—1DA+(q—1)5").
8§4. oy, of and o¥*. We consider here the most interesting sum
2
“4.1) ov= >, > x(ozx’"+ﬁx+r)l .
(a,8,7) E(kX)8 | zE€EL
On putting
4.2) A=L  p_T,
[44 [44
we have

4.3) oy=(¢g—1o¥ with o¥= Zx(x’"+Ax+B)‘2.
(4,B)€ (kX)2 |x€k

Let the group k£* act on the set (£*)% by the rule:
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4.4 (4, Bt=(At™"!, Bt™), tek*.

Clearly, the stability group at each point (4, B) is trivial and so each
orbit consists of ¢—1 points and there are ¢—1 orbits in (£*)%. Since
Diwer Y@+ AL w4+ Bt") = ()" Xser 2(™ 4+ Ax+B), if we call (4,, B)),
1<i<q-—1, representatives of orbits, we have

@5 t=(g—Dot* with of*=351|S,

where f,(x)=2™+ A,x+B,.
From (1.6), (1.9), (2.5), (3.5), (4.3), (4.5), it follows that
4.6) 0#*={Q(Q+1—5,—‘3H), if y(w)=1,
q(g+1-0"), if y(w)+#1.

§5. End of the proof. Let 4=4(A, B) be the discriminant of z™
+Ax+B, A+0, B+0. By (0.2), it is clear that 4(4, B)=0 if and only
if 4((4, B)t)=0 for all t € k*. Hence the vanishing of 4 is a property
of an orbit. We call an orbit singular (resp. non-singular) if it con-
tains a point (4, B) such that 4(4, B)=0 (resp. 4(4, B)+0). As is
easily verified, we have 4(A, B)+#0 if and only if the affine plane curve
y*=g"+Ax+ B is non-singular.® There is always a singular orbit,
say, the one which contains the point ((—1)™m, m—1). We claim
that there is only one gingular orbit. In fact, assume that 4(A, B)
=(=D"'(m—-1)""'A"+m"B™'=0. Then, a simple computation
shows that (4, B)=(—1)™m, m—1t with t=(—1)"mB/(m —1)A,
which means that every singular curve is in the orbit of the curve
(=D™m, m—1). From now on, we assume that ¢—2 curves (4,, B),
1<i<q—2, are non-singular and the last curve (A,_;, B,_)=((—1)"m,
m—1) is singular.

We now consider the sum
6D S..= ;kx(fq-l(x)), Je-i@)=2™+(—1)"mx+(m—1).

First, note the factorization:

(5.2) f,.(@)=(@—e)h(x), where e=1 if m is odd, e= —1 if m is even
and Mx)=x™*+2ex™ 2+ 3x™ 4 - . +(Mm—2)ex+(m—1).

Therefore, we have

(5.9) Sy, =800 —x(h(e)), h(e)=(1/2)ym(m—1)+0.

Since y is of exponent d and (d, m—2)=1, by the well-known result

(Theorem 2C on p. 43 of [1]) we have

(5.4) 1S, S (m—3)Wq .

On the other hand, call f(z)=2™-+ Az -+ B one of the f,(x)’s, 1<i<q—2,

such that |S,|=inf|S,,|. Then, from (4.5), (56.3), (5.4), we get

(5.5) O‘é‘*g(q_2)‘Sf|2+‘sfq—1\zg(q_2)lSj‘l2+(‘Sh(x)l—1)2 .

>(q—2)|8,F—2[S,()|+1=(9—2)|S,—2(m—3)v ¢ +1,

8) When 4(4, B)=0, the point (—1)®mB/(m—1)A, 0) is the only singular point
of the affine curve y¢=x"+Ax+B.
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which implies that

5.6) 1S, J S F 20 =)W g =1

q—2
Note that ¢}* <q* since ¢’, 6" =1 and that ¢ —2>q/3, ¢**>3 since ¢ =3.
On substituting the values of ¢%* of (4.6) in (5.6) we obtain the in-
equality (0.3) of Theorem.
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4) (5.6) is a generalization of (1.3.30).



