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20. Spatial Growth of Solutions of a Non-Linear Equation

By Kohei UCHIYAMA
Nara Women’s University

(Communicated by Kosaku YOSIDA, M. J. A., Feb. 12, 1981)

1. Given a continuous function M(u, %) of (u, w) e [0, 1]* and a
nondecreasing function F(x) on R=(— 0, +o0) with lim,___ F(x)=0,
and lim,_ .. F(x)=1, let us consider the following evolution equation
(1) %—:M(u, w) (u=u(zx,t), x € R, t>0)
where

a=u(z, t)=ji: Wz —y, DAF@).

It is assumed throughout the paper that M has continuous partial
derivatives M, =0M /ou and M,=0M /ou, and satisfies

(2) a=M,0, 0)>0, B=M 0, 0)> —«

(3) M@©,00=M1,1)=0; M,(u, w)=0 for (u,n) < [0, 1]
(4) M(u, u)>0 for O0<u<1,

and that F' is right-continuous and satisfies

(5) 0<F(0-)=F(0)<1

and its bilateral Laplace transform
Wo)= j " e qF ()

is convergent in a neighborhood of zero.

It is routine to see from (3) that for any Borel measurable func-
tion f(x) taking values in [0, 1], there is a unique solution of (1), with
initial condition u(x, 0)= f(x), which is also confined in [0, 1] (we will
consider only such solutions), and that if two initial functions satisfy
0< f1£ f:<1, the corresponding solutions preserve the inequality.

A typical example of M is M(u, W) =at—(a+pun+pu. If we let
B=0 in this example, (1) becomes the equation of simple epidemics
(cf. [5D

o _ o1
(6) %——C{u(l u).

Another typical case is M =a(u—u)+ g(u), where g is continuously
differentiable function with ¢(0)=¢(1)=0, ¢’(0)>0 and g(u#)>0 for
0<u<1. If we replace, in this case, the compound Poisson operator

ui~—>7% by the diffusion operator ui—~—09*u/d2% a nonlinear diffusion
equation
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ou ou

(7) %——a ‘a‘:‘vT +g(u)
appears. Concerning the equation (7) there are a number of works
and it is shown among others that any solution of (7) with finite initial
function propagates to the right and left with the asymptotic speed
2v/ag’(0), provided further g(u)<g’(0)u (0=<u<1) (cf. [1]). The pur-
pose of this note is to obtain an analogue for the equation (1). In a
special case of (6) the result is obtained in [6] by an entirely different
method (cf. also [2], [3] and [5]).

2. If dF(x) is supported by a lattice containing zero, we denote
by X the smallest one among such lattices ; otherwise let X=R. Set

c*—inf 2FO+E  ang Co= —inf 2VO+E
00 ] 0<0 16

The result of this note is

Theorem. If the initial function is continuous and positive at
least at one point of X and if c,<c,<e,<c*, then
(8) lim inf w(x, t)=1.

Remark. If it is further assumed that
(9) M, w)<ou+pu  for (u,w)el0, 1]
solutions of (1) with w(x, 0)=0 for x>0 propagate to the right with
asymptotic speed c¢* in the sense of (8) and of the following
(10) lim sup u(x, t)=0 for ¢>c*.

L= x>ct

(c* may be negative; in such a case we should say that solutions re-
cede to the left.) The relation (10) is easily seen by comparing solutions
of (1) with those of the linear equation ou/6t=a% -+ pu (cf. [8]). When
the condition (9) is violated, the asymptotic speed for (1) could be
larger than c*, as is suggested from the diffusion case (7). Arguments
for c, are parallel.

3. For the proof of Theorem we prepare two lemmas.

Lemma 1. Let c,<c,<c¢,<c*. Then there is a positive number
8 such that if 0<e, 1<0, and c,<c<Ze¢,, the function

11) w(x)=e exp(—2x?)

18 a c-substationary solution for (1), i.e.

(12) cw’ +M(w, w)=0 (wf=¢jl_w),
x

Proof. Let c,<c<c* and w be defined by (11). Then for small
enough

M(w, w)(x)={B+5(e) + (a+5(e)) j exp(RAzy — 2y dF (y)w(x)

where s(e) is a function of ¢ only and tends to zero as ¢ | 0. If we set
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J(0, 2, =L (8+5()+ (a+5() j exp Oy —)dF ()} (6+0),

1
6]
then
13)  cw'(@)+Mw, w)(x)=22]2|{—c sign z+J(2Ax, 1, e)}w(x),
where |z|sign x=x. It is not difficult to see that lim, ,, ,min,.,J(6, 2, ¢)
=>c*. Now let ¢, <c,<c,<c*. Then we can choose §,>0 so that if
0<e, A< 6;, then —c+J(2ax, 2, e)=0 for >0 and ¢<¢,. Similarly if
0<e, 1< 0, then ¢+ J(24x, 2, €)=0 for <0 and ¢=¢,. Thus the asser-
tion of Lemma 1 follows from (18) by setting §=min (5,, 9,).
Lemma 2. Let b,=sup{x: F(z)<1}(0<b,< ) and ¢ be any posi-
tive number. "Then the solution of dv/ot=cv (t>>0) satisfies
lim 1
z—w,zeX 10 X

log (1/v(z, t))=%— for t>0,

0
provided that v(x, 0) is nonnegative, bounded and continuous, and
vanishes for x>0 but does not for some point of X.

Proof. Let f(x)=v(x, 0) satisfy what is provided in the lemma
and set

Gw)=31 D" proz) (¢>0),

n=0 !

where F*" denotes the n-fold convolution of F. Then
v(@, )= fa—1dGw).
Noting F**(y)=1 for y>nb,, we see
v(@, DSEUD F@) 3 (e /n!

and hence, by lim log(n!)/nlog n=1, lim(1/x log x)log(1/v(x, t))=1/,.
To prove the opposite inequality

14) Hm—L  log (1/v(z, th=-L1,
zlog x b,

we can assume f=1I,, (the indicator function of [0, #)) for a positive
h. Take b< b, arbitrarily and observe that for each n

oo, 20 " 10— aFe) = CE=FO ey — (-t

where F(a)=(F(w\/b)—F(b))/(1—F(b)). Let
,J=f 2df(z) and o= ( j (— y)zdﬁ’(x)yﬂ.

First we assume that b,=oco or F(b,)—F(b,—)=0 and that F' is non-
lattice. Then ¢>0 and a central limit approximation (cf. [4, § 42])
implies

Frr(g)— F*~(x—h)= a«;% +o (—}%—) as n=[x/pl—>oo,

and so
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1

. 1 _1
oF x-log 1/v(z, £))<lim 2log 7 log ([%/p] !)—-ﬂ-.

Since b<<p and b can be arbitrarily close to b,, we obtain (14).
When F is lattice or F(b,) —F(b,—)>0, (14) is verified in a similar

way too, if we mnote w(z, t)=jv(x—-y, t/2)dG,(y) after seeing

inf, 1, 2ex?(®, t/2)>0 for any L>0. This inequality follows from
the fact that the support of dG.(x) agrees with X, which would be
easily seen in the case that F' is centered lattice or F' is not lattice. In
the remaining case there are real numbers 0<<£<d such that ¢£/d is
irrational and F' has positive jumps at ¢ and at £¢—d, and therefore
dG,(x) has positive mass at each point of H={né+m(E—d): n, m=1,
2, ---}. It is left to the reader to show that H is dense in R. The
proof of Lemma 2 ig finished.

4. Proof of Theorem. Let ¢, <c,<c.<e,<ei<c* and u(z, t) be
a solution of (1) with an initial function satisfying the condition of
Theorem. After some comparison arguments, a crude application of
Lemma 2 shows that for any 1>0, there is ¢>0 such that w(z, 1)
>eexp(—axD), xe X. Accordingly it follows from Lemma 1 that
there is a smooth positive function w such that w(z, 1)=w(x), re X
and w satisfies (12) simultaneously for c;<c<c¢|. Let u,(z,t) be the
solution of (1) starting from this w. Then
(15) U, )<z, t+1) forall zeX and ¢>0.
Since v(w, t)=(3/0t)u,(x+ct, t) satisfies ov/ot=c(ov/0x)+ Av+Bo,
where A and B are bounded continuous functions of (x, t), and »(-, 0)
=cw' +M(w, W), we see u,(x-+ct, t) is nondecreasing in ¢t if e;<c=<c].
Now let ¢,<c¢=<¢, and w(r)=lim,_ ., u (x+ct,t). Then w, is a sta-
tionary solution of du/0t = c(ou/dx) + M(u,%). In other words, w (x—ct)
is a solution of (1). Since w. (x)=wu,(x,0)=w(x), it is found that
w(x—ct) =u,(x,t), or, what is the same, w (x+(c;—c)t) =u, (x+cit, t).
This implies lim, . w.(x)>0. Similarly lim,. . w.(#)>0. Thus
o=inf, w.(x)>0 and so we have w (x—ct)=y(t), where y is a solution
of dy/dt=M(y, y) with y(0)=4d. By virtue of (4), y(¢) 1 1. Hence w,
=1. Consequently u,(ct,?) 11 for ¢,;<e¢<c¢,. By (15) this completes
the proof.
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