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1. Let k be an algebraic number field and K be its finite Galois
extension of degree n with the group G. We denote by C and D the
idele class group of K and its connected component of the unity re-
spectively. In this note, we shall determine the structure of the
cohomology group H(G, C/D) for non-negative integer p. For
cohomology groups and the morphisms concerned with them, we shall
use the notation and terminology as is given in S. Iyanaga [3].

2. In this section,/9 denotes an arbitrary integer. Let us denote
the idele group of K by J and its connected component of the unity
by H. We denote by E the set of all imaginary places of K. Then
the maximal compact subgroup of H is given by H={x=(x,)

1 if p e E, Ix,I= 1 if p e E}. Let us denote the canonical homomor-
phism from J to C by and (H) by D. Then we have the fol-
lowing exact sequence

( 1 ) 1 >H >CK >C:/D ;1.

By cohomology sequences belonging to (1) and the fact that H(G, H’)
=0 if q is odd, we have

( 2 ) 0 >H+’(C) >H+(C:/D)---->H+(H)
>H+(C:) >HP+(C:/D)---O (exact).

Here we have abbreviated Hq(G, A) to Hq(A) or G-module A.
Since D:/D is uniquely divisible, we obtain the isomorphism

( 3 ) H(G, C:/D:)-H(G, C:/D).
Hereafter, by virtue of (3), we shall only be concerned with the deter-
mination o H(G, C:/D) instead o H(G, C/D:).

Let {pllgir) be the set of all real places o k which ramify in
K. I r-0, it ollows rom (2) that

H(G, C:/D)-H(G, C:) HP-(G, Z).
Therefore, in the ollowing, we exclude this case and shall treat

only the case r0. This implies that n is even, so we put m--n/2 e Z.
Let 3 be one o the extensions o p to K, and N be the decompo-

sition group o . Let us denote the transfer homomorphism from
N to G and the restriction rom G to N on cohomology groups by
and p. respectively. Since H(G, H’) is generated by rv’OH(N, H),
we obtain the ollowing lemma.
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Lemma 1. Under the above notation, we have
H,(G, H’) (rNi,H(Ni, H’) 1i<=r} Z.

Here (rNi,HP(Ni, H’) l <=igr denotes the grip generated by all
r,eH(N, H) and Z; denotes the elementary abelian group of order
2

The ollowing theorem can be proved by using Lemma 1 and (2).
Theorem 1. For all p e Z, we have the isomorphism
H(G, C/D)H-(G, Z)/(r"H’-(N, Z) ligr}.

Corollary 1. Let N denote the group generated by N, ..., N.
Then we have

H(G, C/D)G/[G, G]N.. Hereafter, we shall write Hq(G, Z) as an additive group. I
G is commutative, we can easily show that H’(N, Z)=p,H’(G, Z)
for all p0. Hence it immediately ollows that r’,H(N, Z)
mH(G, Z). Here we deaote mH’(G, Z)= (mxx e H(G, Z)}.

Therefore, i G is commutative, we obtain the ollowing isomorphism
2or all p 0.
( 4 ) H+(G, C/D)H(G, Z)/mH(G, Z).
By virtue o (2) and (4), using cup product, we have
( 5 ) H’+l(G, C/D) H-(G, Z) M,
where M is isomorphic to Z;- (resp. Z) i the 2-Sylow subgroup o G
is cyclic (resp. not cyclic).

Lemma 2. Let 2 be the highest power of 2 dividing n, and S be
a 2-Sylow subgroup of G. We denote 2- by t. Then te Z and for
all p O, we have

H’+(G, C/D)H’(G, Z)/mH’(G, Z),
if and only if H’+(S, Cx/D)H(S, Z)/tH’(S, Z).

Lemma 3. Let G be a generalized quaternion group of order 2.
We denote 2- by t. Then for all p Z, we have

H(G, C/D)Z,
Hp+I(G, CK/D)Zr-1

H,+(G, C/D)Z,
H+(G, C/D)-Z;.

A detailed proof of the above lemmas is given in [4].
Theorem 2. Let the notation be as above. For all pO, we have

H’+(G, C/D)H’(G, Z)/mH’(G, Z).
Proof. By Lemma 2, we may assume that G is a 2-group. If G

is neither cyclic group nor a generalized quaternion group, we can find
a subgroup L of G, for every N, such that LN andLZ. From
Theorem 1 and (4), it follows that 2H(L, Z)=0. By virtue of the
associativity of the transfer homomorphism, we have mH(G, Z)
=<r"H(N, Z)lgigr>=O. Then our assertion is the immediate
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consequence of Theorem 1.
I G is either cyclic or a generalized quaternion, our theorem ol-

lows rom (4) and Lemma 3.
Corollary 2. Let S be a 2-Sylow subgroup of G. Then for all

p >= 0, we have
H2p/I(G, CK/DK)NH2p-I(G, Z) ( M,

where M is classified as follows,
i) M-Z-1 for the following three cases,

a) p=0,
b) S is cyclic,
c) p is even and S is a generalized quaternion.

ii) M-Z; for other cases.
Proof. We can easily verify that mH2p(G, Z)= Z2 in the cases a),

b) and c) and that mH(G, Z)=0 otherwise. Therefore, using cup pro-
duct, our conclusion follows from Theorem 2 and (2).
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