88. On the Galois Cohomology Groups of C_K/D_K

By Shin-ichi KATAYAMA

Department of Mathematics, Kyoto University

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1981)

- 1. Let k be an algebraic number field and K be its finite Galois extension of degree n with the group G. We denote by C_K and D_K the idele class group of K and its connected component of the unity respectively. In this note, we shall determine the structure of the cohomology group $H^p(G, C_K/D_K)$ for non-negative integer p. For cohomology groups and the morphisms concerned with them, we shall use the notation and terminology as is given in S. Iyanaga [3].
- 2. In this section, p denotes an arbitrary integer. Let us denote the idele group of K by J_{K} and its connected component of the unity by H_{K} . We denote by E the set of all imaginary places of K. Then the maximal compact subgroup of H_{K} is given by $H'_{K} = \{x = (x_{\mathfrak{p}}) \in J_{K} \mid x_{\mathfrak{p}} = 1 \text{ if } \mathfrak{p} \in E, |x_{\mathfrak{p}}| = 1 \text{ if } \mathfrak{p} \in E\}$. Let us denote the canonical homomorphism from J_{K} to C_{K} by φ and $\varphi(H'_{K})$ by D'_{K} . Then we have the following exact sequence

$$1 \longrightarrow H'_{K} \xrightarrow{\varphi} C_{K} \xrightarrow{\psi} C_{K} / D'_{K} \longrightarrow 1.$$

By cohomology sequences belonging to (1) and the fact that $H^q(G, H_K')$ = 0 if q is odd, we have

$$(2) \qquad 0 \longrightarrow H^{2p+1}(C_{\kappa}) \longrightarrow H^{2p+1}(C_{\kappa}/D'_{\kappa}) \longrightarrow H^{2p+2}(H'_{\kappa}) \longrightarrow H^{2p+2}(C_{\kappa}) \longrightarrow H^{2p+2}(C_{\kappa}/D'_{\kappa}) \longrightarrow 0 \quad \text{(exact)}.$$

Here we have abbreviated $H^q(G, A)$ to $H^q(A)$ for a G-module A. Since D_K/D_K' is uniquely divisible, we obtain the isomorphism

$$(3) Hp(G, CK/DK) \cong Hp(G, CK/D'K).$$

Hereafter, by virtue of (3), we shall only be concerned with the determination of $H^p(G, C_K/D_K)$ instead of $H^p(G, C_K/D_K)$.

Let $\{\mathfrak{p}_i | 1 \leq i \leq r\}$ be the set of all real places of k which ramify in K. If r=0, it follows from (2) that

$$H^{p}(G, C_{K}/D'_{K}) \cong H^{p}(G, C_{K}) \cong H^{p-2}(G, Z).$$

Therefore, in the following, we exclude this case and shall treat only the case r>0. This implies that n is even, so we put $m=n/2 \in \mathbb{Z}$.

Let \mathfrak{P}_i be one of the extensions of \mathfrak{P}_i to K, and N_i be the decomposition group of \mathfrak{P}_i . Let us denote the transfer homomorphism from N_i to G and the restriction from G to N_i on cohomology groups by $\tau^{N_i,G}$ and ρ^{G,N_i} respectively. Since $H^{2p}(G,H_K')$ is generated by $\tau^{N_i,G}H^{2p}(N_i,H_K')$, we obtain the following lemma.

Lemma 1. Under the above notation, we have

$$H^{2p}(G,H_{\scriptscriptstyle{K}}') = \langle \tau^{N_i,G}H^{2p}(N_i,H_{\scriptscriptstyle{K}}') | 1 \leq i \leq r \rangle \cong Z_2^r.$$

Here $\langle \tau^{N_i,G}H^{2p}(N_i,H_K')|1\leq i\leq r\rangle$ denotes the group generated by all $\tau^{N_i,G}H^{2p}(N_i,H_K')$ and Z_2^r denotes the elementary abelian group of order 2^r .

The following theorem can be proved by using Lemma 1 and (2).

Theorem 1. For all $p \in \mathbb{Z}$, we have the isomorphism

$$H^{2p}(G, C_{\scriptscriptstyle{K}}/D_{\scriptscriptstyle{K}}') \cong H^{2p-2}(G, Z)/\langle au^{N_i, G}H^{2p-2}(N_i, Z) | 1 \leq i \leq r \rangle.$$

Corollary 1. Let N denote the group generated by N_1, \dots, N_r . Then we have

$$H^0(G, C_{\kappa}/D'_{\kappa}) \cong G/[G, G]N.$$

- 3. Hereafter, we shall write $H^q(G, Z)$ as an additive group. If G is commutative, we can easily show that $H^{2p}(N_i, Z) = \rho^{G,N_i}H^{2p}(G, Z)$ for all $p \ge 0$. Hence it immediately follows that $\tau^{N_i,G}H^{2p}(N_i, Z) = mH^{2p}(G, Z)$. Here we denote $mH^{2p}(G, Z) = \langle mx | x \in H^{2p}(G, Z) \rangle$. Therefore, if G is commutative, we obtain the following isomorphism for all $p \ge 0$.
- (4) $H^{2p+2}(G, C_K/D_K') \cong H^{2p}(G, Z)/mH^{2p}(G, Z).$

By virtue of (2) and (4), using cup product, we have

(5)
$$H^{2p+1}(G, C_{\kappa}/D'_{\kappa}) \cong H^{2p-1}(G, \mathbf{Z}) \times M,$$

where M is isomorphic to \mathbb{Z}_2^{r-1} (resp. \mathbb{Z}_2^r) if the 2-Sylow subgroup of G is cyclic (resp. not cyclic).

Lemma 2. Let 2^{l} be the highest power of 2 dividing n, and S be a 2-Sylow subgroup of G. We denote 2^{l-1} by t. Then $t \in \mathbb{Z}$ and for all $p \ge 0$, we have

$$H^{2p+2}(G, C_K/D_K') \cong H^{2p}(G, Z)/mH^{2p}(G, Z),$$

if and only if $H^{2p+2}(S, C_K/D'_K) \cong H^{2p}(S, \mathbb{Z})/tH^{2p}(S, \mathbb{Z})$.

Lemma 3. Let G be a generalized quaternion group of order 2^{i} . We denote 2^{i-1} by t. Then for all $p \in \mathbb{Z}$, we have

$$H^{4p}(G, C_{\scriptscriptstyle K}/D_{\scriptscriptstyle K}')\!\cong\! Z_{\scriptscriptstyle 2}^2, \ H^{4p+1}(G, C_{\scriptscriptstyle K}/D_{\scriptscriptstyle K}')\!\cong\! Z_{\scriptscriptstyle 2}^{r-1}, \ H^{4p+2}(G, C_{\scriptscriptstyle K}/D_{\scriptscriptstyle K}')\!\cong\! Z_{\scriptscriptstyle t}, \ H^{4p+3}(G, C_{\scriptscriptstyle K}/D_{\scriptscriptstyle K}')\!\cong\! Z_{\scriptscriptstyle 2}^r.$$

A detailed proof of the above lemmas is given in [4].

Theorem 2. Let the notation be as above. For all $p \ge 0$, we have $H^{2p+2}(G, C_K/D_K') \cong H^{2p}(G, Z)/mH^{2p}(G, Z)$.

Proof. By Lemma 2, we may assume that G is a 2-group. If G is neither cyclic group nor a generalized quaternion group, we can find a subgroup L_i of G, for every N_i , such that $L_i \supset N_i$ and $L_i \cong \mathbb{Z}_2^2$. From Theorem 1 and (4), it follows that $2H^{2p}(L_i, \mathbb{Z}) = 0$. By virtue of the associativity of the transfer homomorphism, we have $mH^{2p}(G, \mathbb{Z}) = \langle \tau^{N_i, G}H^{2p}(N_i, \mathbb{Z}) | 1 \leq i \leq r \rangle = 0$. Then our assertion is the immediate

consequence of Theorem 1.

If G is either cyclic or a generalized quaternion, our theorem follows from (4) and Lemma 3.

Corollary 2. Let S be a 2-Sylow subgroup of G. Then for all $p \ge 0$, we have

$$H^{2p+1}(G, C_K/D_K') \cong H^{2p-1}(G, \mathbf{Z}) \times M,$$

where M is classified as follows,

- i) $M \cong \mathbb{Z}_2^{r-1}$ for the following three cases,
 - a) p=0,
 - b) S is cyclic,
 - c) p is even and S is a generalized quaternion.
- ii) $M \cong \mathbb{Z}_2^r$ for other cases.

Proof. We can easily verify that $mH^{2p}(G, Z) = \mathbb{Z}_2$ in the cases a), b) and c) and that $mH^{2p}(G, Z) = 0$ otherwise. Therefore, using cup product, our conclusion follows from Theorem 2 and (2).

References

- [1] E. Artin and J. Tate: Class Field Theory. Benjamin, New York (1967).
- [2] H. Cartan and S. Eilenberg: Homological Algebra. Princeton Univ. Press, Princeton, N. J. (1956).
- [3] S. Iyanaga (ed.): The Theory of Numbers. North Holland/American Elsevier (1975).
- [4] S. Katayama: On the Galois cohomology groups of C_K/D_K . Master Thesis, Kyoto Univ. (1981).
- [5] R. C. Lyndon: Cohomology theory of group extensions. Duke Math. J., 15, 271-292 (1948).
- [6] R. G. Swan: The p-period of a finite group. Illinois J. Math., 4, 341-346 (1960).