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1. Let k be an algebraic number field and K be its finite Galois
extension of degree n with the group G. We denote by C, and D, the
idele class group of K and its connected component of the unity re-
spectively. In this note, we shall determine the structure of the
cohomology group H?(G, C./D,) for non-negative integer p. For
cohomology groups and the morphisms concerned with them, we shall
use the notation and terminology as is given in S. Iyanaga [3].

2. In this section, p denotes an arbitrary integer. Let us denote
the idele group of K by J, and its connected component of the unity
by Hr,. We denote by E the set of all imaginary places of K. Then
the maximal compact subgroup of H, is given by Hy={x=(,) € J«|,
=1ifpeFE, |x|=1if pe E}. Let us denote the canonical homomor-

phism from J; to Cx by ¢ and ¢(H%) by D%. Then we have the fol-
lowing exact sequence

(1) 1—>H, 50 V>Cy/Df— 1.
By cohomology sequences belonging to (1) and the fact that H(G, Hy)
=0 if q is odd, we have
(2) 0——>H?*"(Cx)—>H***(Cx/Dyx)—>H"*"*(HY)
——>H****(C )——>H***(Cy/D3)—>0 (exact).

Here we have abbreviated HY(G, 4) to HY(A) for a G-module A.

Since D /D% is uniquely divisible, we obtain the isomorphism
(3) H*(G,Cy/D)=H*(G, Cy/D%).
Hereafter, by virtue of (3), we shall only be concerned with the deter-
mination of H*(G, Cx/D%) instead of H?(G, Cx/Dy).

Let {p,|1<i<r} be the set of all real places of & which ramify in
K. If r=0, it follows from (2) that

H*(G, Cr/Dy)=H"(G, Cr)=H**G, Z).

Therefore, in the following, we exclude this case and shall treat
only the case »>0. This implies that » is even, so we put m=n/2¢ Z.

Let B, be one of the extensions of p; to K, and N, be the decompo-
sition group of PB,. Let us denote the transfer homomorphism from
N, to G and the restriction from G to N, on cohomology groups by «¥+¢
and p% "¢ respectively. Since H**(G, HY) is generated by «¥#“H*?(N,;, H%),
we obtain the following lemma.
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Lemma 1. Under the above notation, we have
H**»(G, H)={""H**(N,, H)|1<i<rY>=Z3.

Here (¥»*H**(N,, Hy)|1<i<r) denotes the group generated by all
VebHP(N,, HY) and Z; denotes the elementary abelian group of order
2",

The following theorem can be proved by using Lemma 1 and (2).

Theorem 1. For all p e Z, we have the isomorphism

H>*(G, Cx/Dy)=H""*G, Z)/{"*H* (N, Z)|1<i<7r).

Corollary 1. Let N denote the group generated by N,, ---, N,.

Then we have
HG, Cx/Dx)=G/IG, GIN.

3. Hereafter, we shall write H(G, Z) as an additive group. If
G is commutative, we can easily show that H*’?(N,, Z)=p*":H**(G, Z)
for all p>0. Hence it immediately follows that <¥=¢H**(N,, Z)
=mH*”(G, Z). Here we denote mH**(G, Z)=<{mx|xc H**(G, Z)).
Therefore, if G is commutative, we obtain the following isomorphism
for all p=0.

(4) H?*G, Cx/D)=H*(G, Z)/mH**(G, Z).
By virtue of (2) and (4), using cup product, we have
(5) H?(G, Cx/Dx)=H""(G, Z)X M,

where M is isomorphic to Z;~! (resp. Z3) if the 2-Sylow subgroup of G
is eyclic (resp. not cyclic).

Lemma 2. Let 2' be the highest power of 2 dividing n, and S be
a 2-Sylow subgroup of G. We denote 20 by t. Then te Z and for
all p=0, we have

H7*%G, Cx /D) =H*(G, Z)/mH*(G, Z),
if and only if H****(S, Cx/Dx)=H*(S, Z)/tH**(S, Z).

Lemma 3. Let G be a generalized quaternion group of order 2.

We denote 21 by t. Then for all p € Z, we have
H*(G, Cx/D)=Z;3,
H*"G, Cx/Dp)=Z35"",
H»¥ G, Cy/D)=Z,,
H**¥G, Cyx/D)=Z5.

A detailed proof of the above lemmas is given in [4].

Theorem 2. Let the notation be as above. For all p=0, we have
H?»*¥G, Cx/Dy)=H"(G, Z)/mH(G, Z).

Proof. By Lemma 2, we may assume that G is a 2-group. If G
is neither cyclic group nor a generalized quaternion group, we can find
a subgroup L, of G, for every N,, such that L,DN,and L;=Z}. From
Theorem 1 and (4), it follows that 2H*?(L,, Z)=0. By virtue of the
associativity of the transfer homomorphism, we have mH*’(G, Z)
={(c"9H*»(N,, Z)|1<i<r)=0. Then our assertion is the immediate
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consequence of Theorem 1.
If G is either cyclic or a generalized quaternion, our theorem fol-
lows from (4) and Lemma 3.
Corollary 2. Let S be a 2-Sylow subgroup of G. Then for all
p=0, we have
H?**(G, Cy/Dp)=H* G, Z)X M,
where M is classified as follows,
i) M=2Z;" for the following three cases,
a) p=0,
b) S is eyclic,
c) pis even and S is a generalized quaternion.
ii) M=Z; for other cases.
Proof. We can easily verify that mH**(G, Z)=Z, in the cases a),
b) and ¢) and that mH*?(G, Z)=0 otherwise. Therefore, using cup pro-
duct, our conclusion follows from Theorem 2 and (2).

References

[1] E. Artin and J. Tate: Class Field Theory. Benjamin, New York (1967).

[2] H. Cartan and S. Eilenberg: Homological Algebra. Princeton Univ. Press,
Princeton, N. J. (1956).

[8]1 S. Iyanaga (ed.): The Theory of Numbers. North Holland/American
Elsevier (1975).

[4] 8. Katayama: On the Galois cohomology groups of Cx/Dxg. Master Thesis,
Kyoto Univ. (1981).

[6] R.C.Lyndon: Cohomology theory of group extensions. Duke Math. J., 15,
271-292 (1948).

[6]1 R. G. Swan: The p-period of a finite group. Illinois J. Math., 4, 341-346
(1960).



